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1+ 1-DIMENSIONAL YANG — MILLS EQUATIONS
AND MASS VIA QUASICLASSICAL CORRECTION TO ACTION

Two-dimensional Yang — Mills models in a pseudo-euclidean space are
considered from a point of view of a class of nonlinear Klein — Gordon —
Fock equations. It is shown that the Nahm reduction does not work, another,
novel choice is proposed and investigated. A quasiclassical quantization of the
models is based on Feynmann — Maslov path integral construction and its
zeta function representation in terms of a Green function diagonal for an aux-
iliary heat equation with an elliptic potential. The natural renormalization use
a freedom in vacuum state choice as well as the choice of the norm of an evolu-
tion operator eigenvectors. A nonzero mass appears as the quasiclassical cor-
rection, that is expressed via hyperelliptic integral.
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1. Introduction. On Nahm models

Underlying ideas for this investigation, related to the classical Yang —
Mills (YM) theory reductions, were taken from works of Baseyan [3], Corri-
gan [6] and Nahm [8].

This paper is a direct development of author's results [10] in which one-
dimensional model, immersed in SU(2) YM theory, was studied in the con-
text of Nahm model. The author's main result [10] is a demonstration of ex-
istence and evaluation of nonzero quantum correction to action against clas-
sical zero energy (representing mass) as a consequence of the proposed mo-
del. The one-dimensional Yang — Mills — Nahm models were considered
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from algebrogeometric points of view. A quasiclassical quantization of the
models is based on Maslov version of path integral construction and its zeta
function representation in terms of a Green function diagonal for an auxilia-
ry heat equation with an elliptic potential. The Green function diagonal and,
hence, the generalized zeta function and its derivative are expressed via so-
lutions of Drach equation [15] and, alternatively, by means of Its — Matveev
[19] formalism in terms of Riemann theta-function. The approach is based on
Baker-Akhiezer functions for Kadomtsev — Petviashvili equation [12]. The
quantum corrections to action of the model are evaluated. The fields from
the class of elliptic functions are properly studied. For such model, which
field is represented via elliptic (lemniscate) integral by construction, YM
field mass is defined as the quantum correction, in the quasiclassical approx-
imation it is evaluated via hyperelliptic integral.

The model, via the Atiyah — Drinfeld — Hitchin — Manin — Nahm
(ADHMN) construction of static monopole solutions, is related to Yang —
Mills — Higgs theories in four dimensions in the Bogomolnyi — Prasad —
Sommerfield limit. The ADHMN construction < — equivalence between
self-dual equations, one — unidimensional, the other in three dimensions (re-
duced Euclidean four dimensional theory by deleting dependence on a sin-
gle variable), see [16].

The weak point of description starting from the 1+ 0 Nahm model is
namely the one-dimensionality of the reduction that provoke ambiguity of
the interpretation of such correction as the mass.

Let us list basic elements of this paper construction.

1. Yang — Mills equations in PseudoEuclidean dimensions. The equa-

tion for YM field I, from semisimple compact gauge group in covariant

form reads as

V“T, =0, (1)

whence u,v=0,1,2,3, the time variable is X =ct,c=1; X — space variab-
les. For the gauge fields T, =T, , where
];Jv =ayr/ _avr‘lL _[‘1;/’11]/ ach)=a,u _[T;'HCD]’ (2)
one has the covariant equation
‘:’Tv _ava,u’T;z +[’T;l’av'T;l _ayTv]+[Ty/[’1—’;z’Tv ]]_ (3)
-0,[T,,T,]=0,
as written, e.g., in Faddeev — Slavnov book [2].
The reduction via independence on X, k=1, 2, 3; setting Xy, = t, choo-
sing the Hamilton gauge T, =0, gives
d’T,
dr?

B dT, . _
=[LIT, T1], [Tk,gl 0. (4)
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The self-dual equations [6],
—L= i“g}jkl}ﬂc ’ ®)

imply Egs. (4).
For illustration we would use 2 x 2 matrix gauge group (isospin group

SU(2)) and the basis of Pauli matrices ; , expanding T, = AﬁO‘ - Equalizing

terms by G and evaluating sums one goes to the vector form

k k i 0 AP —io AP
LA, -0,0,A, +A, &, (i0,A, —i0 A7) — ©
AT AT A LiAT AF AT g 4 I i P
—IAAA +IAA A —ig, A0 A, —ie, A0 AT
2. YM equations: vector form, Lorentz gauge. Rescaling the vector po-
tential we return the self-action charge parameter & to rewrite the YM
equation keeping the same notations

DA, +26A“x(20,A, -0,A, —2eA,xA,)=0, @)
k=1,2,3, where, A, is expressed from the Lorentz gauge

Ay=/0,A, ®)

e.g. see Konopleva — Popov book [7]. The difference is in that we use real
time variable.

The units are chosen so as velocity of light in vacuum ¢ =1, hence
=0, —0,0,.

Quantization is performed in Faddeev — Popov works [4] and presented
in details icluding perturbation technique in Faddeev L. [13]. Recently we
evaluated correction to the mass for the Nahm reduction of YM theory by
means of quasiclassical asymptotics [10; 12] developing its renormalization
in [16] with applications to the special case of Heisenberg chain equation,
that differs from Nahm case only by physical origin and rescaling.

3. Regularization (renormalization) as expalnation of nonzero mass
appearance by quantization Faddeev: «Sidney Coleman coined a nice name
dimensional transmutation for the phenomenon, which I am going to describe.
Let us see what all this means».

«Through these (free particles) solutions are introduced via well defined
quantization of the free fields. However the more thorough approach leads
to the corrections, which take into account the selfnteraction of particles»
[13].

4. The task of the present work is the derivation and solution of the
field equations for a class of the two dimensional models. The result of the
reduction of the basic YM equations and the corresponding Lagrangian is

similar to the one-dimensional one [10]: we obtain 1+ 1 f (phi-in-quadro)
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model equations with the zero mass term and coefficients that depend on
algebraic closure of a matrix anzatz for the gauge fields that fix the model.
The stationary and directed waves (Sec.(3)) are thought as quasiperiodic so-
lutions of the model equations that are expressed in terms of elliptic func-
tions. Its quantization (Sec.(5)) is again performed by means reduced La-
grangean (Sec.(4)) for quasiclassical Feynman — Maslov integral, which
evaluation and quantum corrections to action (Sec.(6.3)) is based on the men-
tioned technique of the generalized zeta-function renormalization in terms
of the nonlinear Drach equation (Sec. (6.1)). It is derived for the Green func-
tion diagonal (within the heat kernel formalism) and gives polynomial solu-
tions in elliptic variables.

Extra variables of arbitrary dimensions (Sec.(5.4), App.) are accounted
for the model applications of the solutions in elementary particles physics.

2. The case of 1 + 1 dimension and reductions
2.1. General equations in the vector form and Nahm reduction

In1 + 1 space, the classical YM theory [11], yields Eq. (3) with the Hamil-

ton reduction T(') =0 , that gives

DTk + aka::Ts - [Ts ’ak’r@ ] + 2[Tc ’ asTk ] + [asTs ’Tk ] - (9)
-[T,,IT,, T,11=0,
Nahm reduction Ts' =A0!5 simplifies it as
a,0A+0,0,0.A-[Aa,,0,Aa]+3A0.Ala,,a,]— (10)
-A’la,,[a,,e]]=0,
that fails in 1+1. Namely, taking k =1
o,0A+@,0,0,A-[Aa,,0,Ac,1+3A0,Ale,,a,]- (11)
_AS[as’[as’aI]] = alaéA _[‘3{5/[055'0‘1]]143 =0,
one arrive at ODE, while for k=2 we have
a,0A+a,0,0,A-[Aa,,0,Aa,1+3A0,Ala,,a,]- (12)

-A’la,,la,,a,]]1= a,0A++3A0,Ala,,a,]- A’la,,[a,,a,]] =0,
that necessarily reduces to 1D case.
2.2. Nowvel reduction

We use the Lorentz gauge, more natural for waves description and for
the vector form (7) as more transparent. So, let us consider alternative (com-
pared to Nahm one) proposal of reduction: the field is specially prepared as

Ak =4 (x )3, (13)
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where §k are constant vectors in isotopic space. It may mean that a particle

space state component is linked with the isotopic one. Plugging (13) in (7)
and returning to low indices, write

043, +25‘_40 x (20,48, =0 Ao —2e¢,5, % A'0)

- - 14
—2e¢s, x (20,45, — 0,85, — 2845, x$5;) = 0. 1)

The Eq. (8) in 1+1 reads
Ay =0,45,,
so, taking the Eq. (7) along the reduction, we write
D@8, +2£0,'0,415, x (20,4,5, —
_ak56181¢1§1 _28¢k§k X55151¢1§1)— (15)
—2e4;3, % (20,4,5, — 0,45, —2&¢,5, x¢$;5,) = 0.
Scalar product of (15) with 5 gives

0, (.., 5,) +46°4,(8,'0,0, ) (5,5, X (5, x5,)) +

o s s o 16
+AE4 4 6.5 % (5 x5) =0, (16)

because (gklgk X51) =0. or, finally
L, +4¢? o (56151¢1 )2 +46” 1lq¢k¢]¢/ =0, 17)

where
Cor = (51,8 (5, %5,)) / (8,5, C, 1% (Sk'S X (8 xS, ))/(gkfgk)
or, for normalized §k,
C,=1-(G,,5) Cry = (5,8 —5;(5,,5.)) = 1—(§j,§k)2.
Note also that
Co =1-(,8)" =C Gy =1-(,,5)* =G

Plugging it in (18) gives

O, +4£°(1-(,,5,)" )4, =0,
Ug, + 452C02¢2 (55151¢1 )2 + 452C12j¢2¢f¢j =0, (18)
Lg, + 4‘92C03¢3 (56151¢1 )2 + 4‘92C13j¢k¢j¢j =0,

where

Gp =1 (Szfsl) =C/ G =1~ (S3,§1)2=C131.
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For orthonormal vectors (Silsk) = é;k, one have
Cox =1_51krclkj =1_5jw (19)
that yields
O, +4&°(1-5,,)4.(,'0,4,)> +4&*(1- 5,)8.9.4, =0, (20)
or, expanding
04, +4*(1-5,,)4,(,'0,4,)> + 482¢k¢]¢j —45°¢ =0. (21)
The system reads

04, +4574,(4; +¢5) =0,
Ug, + 4‘92¢2 (66161¢1 )2 + 4‘92¢2 (¢12 + ¢32) =0, (22)
O, +46°6,(0,'0,¢, )" + 44, (87 +42) =0.

A choice of ¢ =0, gives

O, +45° 4,45 =0,

, o (23)
Og, +4e ¢, =0.

The minimal choice in (13) is

4 =04, =4, =4

It is the superposition in spin and isospin states. Then, for the k=1 we

obtain zero identity, for k=2,3 we have the same equations of known él
model with zero mass.

p+4e7¢ =0. (24)
It is the case that is maximally close to the Nahm one, butin1 + 1.
3. Towards a solution
3.1. Projecting technique application

Consider an equation

[p=Hg) (25)

for arbitrary dependence in the r.h.s. Denoting

¢ =u¢ =v (26)

gives the system
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The projectors [14]

11 £1)
Pi_E[il 1} 8)

split the linearized system (27) in d'Alembert manner. The identity

(B+By=y (29)

reads as transformation of fields and its inverse.

IMI=—(u+v),
: (30)
A=—(u-0).

Acting by the projectors on the evolution system (27) yields

M, -1, = S F([" (1= A)dy),
2 (31)

A +A, = %F(J: (I - A)dy),

that describes interaction of essentially one-dimensional waves — gives a
next step to the Nahm model. Asymptotically, for a localized in space solutions,
otherwise for a specified initial data A = 0 we have

I, -1, =11 =%F(_[;(H)dy),

. (2
Toe = EP(ﬂ')),
1 1
if [1=x.,£==(x—t),n=—=(x+1).
it M=, = (x=fn = (r+1
In the case of the Eq. (35) it looks as nonlinear cubic oscillator
7w, =467, (33)

The equation (33) has elliptic solutions [6], see details in the Sec. (6.1).

3.2. A path to wavetrains as eventually particles wavefunctions

Just remind that the anzatz with B<<L,px =X, p= t ,
¢=A(Px, pt)expilkx—akt]+cc., (34)

after plugging in (24) and holding nonlinear resonance terms (e.g. [10]) in
the first order by the small parameter s yields, taking into account the dis-

persion relation o = +k and with the rule

A =PA,. (35)
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It leads to the integrable (in fact - ordinary) equation

2
A-A =5 pp (36)
ik
that could be solved in terms of elliptic functions.
In the case of (23) one can obtain approximate solution by the similar
anzatz with g <<1,

= A(B, F)expillc—ca]+cc, ¢, = B(Ax, fexpillc—at].  (37)

The same manipulations in the first order by the small parameter g

yields

6&” 2 2

A -A, ——k(A B> +B A?),
l 8)

B, -B, ——(B A’ + A'B).

It is also solvable as a system of ODE.
4. Lagrange density reductions
The Lagrangian density is equal to (see, e.g. [2])
1= =, 1 i e zp 11z =4

L =ZTanﬂ = E(T()zTO +EZka) =E(5Tikrk - Oz'TOi )/ (39)

the fields are normalized as in [7]. The definition (2) of the tensor Tw com-

ponents with account for Lorentz gauge (8)

A =304, (40)
gives
yv Av A - 25[;«.# x Av ]’ (41)
see again [7]. The time-space components of the tensor are
To:‘ =0,'0, o4, _a_Ai_ZS[(aalakAk)xAi]I (42)
ox, ot

i

the sum by k is implied. The 3D subtensor looks as (41). The reduction (13)
reads

oo O OB
T, =0, 6 ﬁxi ot s, —2&(0, 0,4, )8[5, x5,] (43)
and
T, = 04,(x) ; _Mgk —2¢¢,(x)¢,[5, x5, ]- (44)
ox, 0ox;
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Its 1 + 1 space version for the SU(2) gauge (compare with [12]) gives

o, ¢ - 40 SN
To: =0, 0 a% 5§61 — 6_¢;Si_2‘9(ao1 a;il)@[sﬁwi] (45)
and
=~ 04 .. O - .
T, =55k15i _8_?;5“5]( —2ed 4[5, x5, ]. (46)
Then
g, L 0%, o0¢. _ 0
T, T, =(8016_;;151 i1 _a_fsi —2¢&(0, o ¢1)¢[51 x5])
47)
P b o Ok (
(% 0 ox —5 50— ot si—2£(8ola—xl)¢i[sl><si]).
In the case of ¢1 =0,
~ = O0¢ 0 _ _
TT. =—-—L(3 -5 48
0i ~0i at 61‘ ( i i ( )
Similarily
-~ 0¢_,0p_ O -
TT =25 (s -2~ 2ap [5 x5 ])-
ox ox
o¢, _, 0 R R
_a_i(sk( ;;Cl OS — 6ﬂ ~2e,¢,[8, x5, ])— (49)
2 0 SN
_(25¢¢k[5 xS§ k])( ¢ OS; 6¢k 5 —2e4,4.[5%x5,])
and, for normalized §, ,
7.7, <2008 00,09 _
Ox Ox Ox Ox
_0¢, 04, _ ¢ 94
Oox Ox Ox Ox (50)
489> 2[5, x5, ][5, x5, 1.
Evaluating, [§l ><§k][§i ><§k]=1—(§i '§k)2 =1-5,, one arrives at
08 08
LT, = 2§§a+452(¢f¢f ~ BB (51)
For the case of ¢1 =0, one have
. 0
7,7, =208 ) s 52)

ox 6
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Finally, the Lagrange function is

_ 104,94 .
L eh égsat ot (53)
E[(a_xz) (5 ) ]+2 ¢2¢%

In the case ¢§ =¢3, =@ itis simplified as
L=~ +¢; +25°¢' (). (54)

It is coinside with one of classical ﬁ model case, derived and used, after

reduction in [12] for quasiclassical correction theory. The Euler equation for
(54) coincides with (24).

5. Generalized zeta-function regularization of Maslov continual integral

5.1. Action integral expansion

The energy evaluation is based on calculation of the evolution operator
determinant. Its divergence is compensate by a special choice of the theory
basic parameters using a freedom in the definitions. We briefly explain its
origin as well as the small parameter, proportional to ~ 7 used in the quasi-
classical expansion.

The approach was presented by Maslov in [17].The action functional on

a quantum vector field é= {#,,a=2,3} €H is defined as integral over spa-
ce-time stripe t €[0, T],;C eR?

59)= HR{[ ] >3 [aq’j w@}d%dt. 55)

n=

We adjust the regularization (renormalization) scheme [10; 16] to the
problem under consideration, having in mind the Lagrange function (53).
The regularization consists of two steps. First is based on the assumption,
that for a vacuum state the corrections should vanish [17].

Let us expand the action integral around a specific classical field @ over

1 + d space-time.

f=+ Y07, (56)
j

with the appropriate basis }?] and approximate (55) as

+Z

Pyww, +.. (57)
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that, in turn, defines quasiclassical form of the path integral

i~ S
5() J‘Reh jk awl.éwk

((ﬁ)ijk

_[ e"1 D¢ ~ e"1 Hdwf (58)
f

with @ as the classical path with boundary conditions (3(0,56'), oz, 56') and
% as a basis.
Plugging (56) into (55), we obtain for the second derivative

&S al] aﬂ(k . 6;?]. % oo | g
— =V X, |dxdt, 59
B0 (f/’ HR{ = o Z;, oo PBT (59)

where

Vo XXk = Vwawﬂljalkﬁ' (60)

For the basic functions ,:{1( from a Hilbert space H

(§0 .HR{ J tZ] -y (qo)Z]Jdeth (61)

5.2. Rescaling the integral

Let us denote 7,1 as time and space scale parameters, £ is used as in-
teraction parameter. The equations of motion as (24) determine a link be-

. . . ) P
tween them. Introducing dimensionless variables X = Ax , t=r1t Wwe res-
cale as

% 0% =
T A\~ py 1 g
__j de[ 7 Ox""j —n T Ve P |Bdxdt. (62)

The factor by the integral defines the quasiclassical expansion parameter,
its value being small, allows to cut the expansion at some level. A link be-
tween 4 and 7 is found either from evolution equation (38) (dispersion
relation in classical mechanics) or from realation between momentum, ener-
gy and mass in quantum theory. To be sure that a contribution of the last
term is also of order one, we use a link between scale in time 7 and con-
stant of interaction & that is defined in rather ambiguous way via renormal-
ization procedure (see Sec. 6.3).

Jumping back into (58) we write the internal factor as

2. 2
Zdﬁl] 5;{]

V«( );?] lkdxdtu wy,

[ldw .,
7 f

]

d

1
o3 gl S
Ty P AP

ik
.[
H

(63)
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where V@,((D) acts as prescribed by (60)
Vi @)1 =V, 0, 210 (64)
In the case of the Lagrangean (53) the matrix V in the isotopic subspace

Viy =V, o, =452¢321

]

Vi =Vy =V, 5 =45h4,, (65)
V=V, 0 = 4¢3 .
38 Transformations in both spaces 4 and y are changing definition of a
principal state of the theory. So, if one substitute
Xip =Tt} (66)
so that
Vistty = 2@V (67)
The determinant of the matrix V is zero, hence eigenvalues are
0, =0,0, =4&° (& +&). (68)

The self-action of the new basic states

bon o a_ b
nl® = —zné(),m” = —znél (69)

is defined by correspondent equations that yields in different mass correc-
tions for the principle fields.

5.3. The final action: spectral zeta function
The second step of the renormalization is following; introduce a new

normalization parameter 7 of the basic functions in the Maslov integral con-
struction [17]. We can rewrite the integral by introducing a scalar product

. Lo =,
(i,77,) = |, [ it =r 25, (70)
and an operator

il (&t ¢ & IR
P L

n=1

ikt
The quasiclassical (Maslov) functional integral (58) is written as

: -2y (i, L1 yww,

L5(9) ; "
e IHE 1;[ w;. (72)
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For the Hermitian £ the eigen basis chosen yields

and, after Gauss integrals evaluation,
25(0) -
e T 2, (74)
]

having in mind that the zero values do not contribute, and the degeneracy of
the eigenvalues /Atj account, formally,
L5(0)

o (75)

Jdet[L]

To rewrite the determinants of both operators in a form, which allow the
subtraction, we use a generalized zeta-function:

)= A, (76)

where 4 are nonzero eigenvalues of £ . Such definition of the generalized

zeta-function should be interpreted as analytic continuation to the complex
plane of s from the half plane 30,%5> ¢ in which the sum converges. The

right side derivative relation with respect to s at the point s =0 define the
determinant

In(det £) = ¢£,.(0). (77)

The generalized zeta-function (76) admits the representation via the

Green function of the operator 0, +L. A link to the Green function diagonal

elements (heat kernel formalism) has been used in quantum theory since
works by Fock (1937) [18]. The zeta function in 1+d space is constructed
through a set of transformations on the heat equation Green function, z,t,#'
extended for the whole axis

(%+Lj g (7,t,t,%,X')=
5(2)5(t—t)5(%,x')).

(78)

Boundary conditions on the Green function are chosen the same as for
the base functions in Maslov representation and an additional condition is
applied

V.o & (7,4,t,%,%)=0. (79)
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The freedom in a vacuum choice allows to divide £=L+L,. In the case of
1 + 1 space, it yields for (68)

il & ha
B 27rhr22'(12 ox' _FJFMZSZ(%Z ’ 2)_C]’ &)
while the function
il & 0
ol 2nﬁr2r(? ox” _F_Cj &

defines the vacuum part, that should be extracted as the first step of a
renormalization. Here the constant C depends on the particular classical

solutions that form the potential 478 (¢22 +¢32 ) minimum value. We can
build the renormalized zeta function by the extraction as the first step:

g(s)= %j:r” jol_[(gL (et t,2,x) =g, (7, t,t,x,x))dxdtdr, (82)

while the second step of the renormalization is realized by the special choice
of the normalization constant 7.

5.4. Extra variables

Working with a 1+d space, the calculations are organized as follows. For
construction of the generalized zeta function it is convenient to use the
property (see appendix for details)

8, +L, = 81,81,/ (83)

valid for the operators La,b dependent on different variables.
It is also useful to introduce an additional function

1 —_
7 (1) = L j 8 (n.t, 1,2, X)dx'dt, (84)

for which (83) holds as well. For one-dimensional classical problem solu-
tions

2
L= A(—a —— 42 (B +¢§)J, (85)
Ox;
where
T
A=—— "
27hr* A (86)

with the explicit form of the classical problem solution ¢ (x’) already speci-

fied. For the first renormalization it is enough to restrict L, to the space vari-
able only.
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0’ 2 9°
L2 = —AC2 at,z 1L3 = Azzax—,z, (87)

2
2
where ¢” =—-.
T

Integrating in (84) we derive the expressions for 7,

T
"o Nazar %)

-__4 89)
", 4z AT (

We transform the Green function ¢ L for (118) to extract A out of it res-

. T .
caling 7 =—-, and arriving at

lA|

( sz +¢§>]&1 (50 %,%) =
Th

(90)
=9(7,)0(x—x,).
Final form of zeta function is
-1 d
co=lap LT
I'(s) (91)

a2
I:T:Tj.(ng (Ta,%,%) =81, (TA/x/x))dxdTA'

At this point the renormalizing factor r* (often referred to as the mass
scale) is chosen to cut out all logarithmically divergent terms arising from
differentiation of A~ and possibly the Mellin integral as well. It is im-
portant to stress, that the choice of its value has impact on quantitative re-
sults and is not necessarily obvious. On purely mathematical level r* can be
viewed as a free parameter of the theory (a reason for keeping it unspecified
in works of Konoplich?), but it seems so only because we usually are unable
to construct the whole propagator, which would allow us to use the normal-
izing condition of the propagation operator. The propagator

v0<T’<T < l//T |e g |l//0 >=
i i 92)

—%(T—T’)H ~LrH
:Z<I/IT|31 |l//T’><'//T’|€1 |l//0>/
vr

properly set the value of r* (checked by a sample use of the method in the
case of harmonic oscillator). Yet, to obtain physically relevant results one has
to find a way of estimating the normalising factor. This problem will be dis-
cussed in phi-4 context.
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6. Elliptic solutions of Nahm-like reduced model
6.1. Drach equation

The asymptotic of the solutions of the (24) is found via (33). In turn, the
equation (33) that is a rescaling of the Nahms' one [6], that accounts the sel-
faction constant e. Inverse rescaling ¢ = ex gives

#'(2)=4¢4". (93)

Integrating (93) includes a constant of integration ( parameter) »
(@) =(#) -b". (94)

It corresponds to the case m = 0 of the stationary ¢2 model. Solution of
Nahm equation — inversion of the elliptic (lemniscate) integral yields the

Jacobi s function with the imaginary module & = i : ¢=b5”(ibzli)-

¢ dt
1 dt , 95
Ny el e )

so the constant » enters the solution as amplitude and space scale parameter.

6.2. Drach equation for the Green function diagonal

Take a Laplace transform ‘;’L(P/x/xo) of the Green function, defined by
(78): G(P,X) =§L (P,x;x) is a solution of bilinear equation [10]
2GG"—(GY —Hu(x)-p)G* +1=0. (96)

Such equation was introduced by J. Drach in other context [15]. In a case
of reflectionless and finite-gap solutions is solved via polynomials (in p)

P,Q
Glp,x)=P(p,2) /Qp,2), (97)
where z=0r’ (bx; k). Plugging (97) yields

V' (o(2PP"—(P)’)+ p'PP)—(p+u))P> +Q=0, (98)
the primes denote derivatives with respect to z, while

p(z)=2(1-2)(2-2),

u(z) = -6b> (1-z). )

The polynomials

P=p* +P(2)p+Py(2),

(100)
Q=p"+q,p" +q,0° +@p* +4,p + 4.
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A substitution of (100) into the equation splits in the system
—2P, -u+gq, =0,
2D, ~ P2~ 2uP, +b*(2pP"+ p'P,) +q, =0,
b*(p(2P,. + 2P, P, —(P.)*) +
+p'(Py + P,P,))~2P,P,) ~u(2P, + P?)+q, =0,
b*2p(2P,.P, + P, P, + P,P,.) +
+p'(P,Py)+P.P,))~ P} —2uP,P, +4q, =0,
b*(p(2P,P, ~ Py))+ p'Py + 0 =0.

(101)

The arguments in (101) are omitted. The case of Nahm equation yields [10]
q,=0, g, =-2It", q,=q,=1085" 4, =0,
hence P,(z)=-30°(z-1), B =18b"7" -36b"z

Qp) =p(p+30*)(-p+30*)(126* —p*), (102)

where the polynomial Q simple roots P; are ordered for real b. Finally,

Q=Tlw-r) (103)

i=1

where the polynomial Q have the simple roots P; and reflection symmetry

— reduction .
6.3. Mass as the correction

Let us pick up the expressions determining 4 (P) , integrating by period:
7(p) = _[(p2 —3b?(z—1)p+18b*z> —36b*z)dx / 2,/Q. (104)
Going to the variable z, and integrating,
7(p) =[6b"K (i) +2p*K (i) +
+36b* (K (i)-E(i))-3b°p(E(i)-3K(i))1/\/Q,

that gives the zeta function (91) via complete elliptic lemniscate integrals K(i)
and E(i).

(105)

a1
icl 2

21| A[F T(s) (106)

4
J.O L, 2 J.(glq(TA,x,x)—gLO(TA,x,x))dxdrA.

d
2

g(s)=
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Or, plugging the (103) and (105),

(=] 1 2K(i)p® +3b°(K(i) - E(i))p— 48b*K (i)
"(=P) 24/p(p +367)(p—3b7)(p— 24/36%) (2/30* + p)

rescaling, P = p'bz,dp = dp'b2 and denote, K(l) =K, E(l) =E,

dp,  (107)

_ b 2Kp* +3(K - E)p—48K p 108
? I1(—;9)”' 2p(p+3)(p-3)(p-243) (23 +p) 7 .

and the final form for energy corrections
1 a
0  hc? rx?

i
=R nggasmf T, 2 I(ng(rA,x,x)—gLo(rA,x,x))dxdz'A .(109)

Compared to the expression in [10]. Finally, the gauge field particle mass
in the quasiclasical approximation is evaluated as

d s . 2Kp* +3(K —E)p - 48K
£(0)=lim——=b"] (-p)

dp. (110)
0 ds 2\p(p+3)(p—-3)(p—2v3)(2V3 +p)

Conclusion

We have considered a nonlinear plane wave of SU(2) YM field (see e.g.
[3]) in a 1 +d space. It is shown that the quantum correction to energy in
quasiclassical approximation gives nonzero mass that is evaluated via hy-
perelliptical integral (109). Consideration of the 1 + d case in our paper al-
lows to apply multidimension theories as of the in [20]. More generally one
can apply the generalized semiclassical Foldy-Wouthuysen transformation
ase.g.in [9].

Of separate interest there is the special case in the Heisenberg ferromag-
net theory. It is the easy axis case when the «mass terms» tends to zero. It
corresponds the special choice of the magnetic field B value.

Appendix

E =E m( (In(det[L]) - ln(detL]))j (111)

where

iTa® [ p & £ i 0
I =— _F £
0 27hr? ( T ot a2 Z:; (112)
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defines the vacuum state

iTﬂd p 62 & d 62

n=1

To explain (83), take ¢ ;(X) as eigenfunctions of L, with eigenvalues
A ;j and @n(y) as eigenfunctions of 12 with eigenvalues ﬂz,n. Due to the

independence of variables, & ;(x)#,(y) are eigenfunctions of L +L, with
eigenvalues 4,; +4,,.

g _ Ze—(%, i +4,,)7 ¢, i ()¢, (1), i (), (o)
L1+l? jn (¢1,j¢2,n’¢l,j¢2m)
Considering the scalar product we use, we prove

(¢1,j¢z,nr¢1,j¢2,n) = (¢1,j’¢l,j 1(& 8020 (115)

(7). (114)

;T 30 (%) < 1,7 b, (W) (Y )®
8, T2 T 2 T, O @19

It is convenient to introduce an additional function

7@)= [ g (o b8, 2 X, (117)

for which (83) holds as well. For one-dimensional classical solutions

62 ZVN((p(x!))
L= A[ax,z ) (118)
1
iTea™?
A= By (119)

with the exact form of potential V and solution ¢ already specified. We

restrict L to the x variable only. For the rest of the presentation X will be
2

GT
denoted as X and VHG,, =G, Next let ¢* = -
Ma

(120)

Thanks to G. Kwiatkowski for discussions.
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