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1 + 1-DIMENSIONAL YANG — MILLS EQUATIONS  

AND MASS VIA QUASICLASSICAL CORRECTION TO ACTION 
 

Two-dimensional Yang — Mills models in a pseudo-euclidean space are 
considered from a point of view of a class of nonlinear Klein — Gordon — 
Fock equations. It is shown that the Nahm reduction does not work, another, 
novel choice is proposed and investigated. A quasiclassical quantization of the 
models is based on Feynmann — Maslov path integral construction and its 
zeta function representation in terms of a Green function diagonal for an aux-
iliary heat equation with an elliptic potential. The natural renormalization use 
a freedom in vacuum state choice as well as the choice of the norm of an evolu-
tion operator eigenvectors. A nonzero mass appears as the quasiclassical cor-
rection, that is expressed via hyperelliptic integral.  

 
Двумерные модели Янга — Миллса в псевдоевклидовом простран-

стве рассматриваются с точки зрения одного класса нелинейных урав-
нений Клейна — Гордона — Фока. Показано, что уменьшение Нама не 
работает, предложен и исследован другой, новый выбор. Квазиклассиче-
ское квантование моделей основано на построении интеграла по траек-
ториям Фейнмана — Маслова и представлении его дзета-функции в 
виде диагональной функции Грина для уравнения вспомогательной теп-
лоты с эллиптическим потенциалом. При естественной перенорми-
ровке используется свобода выбора состояния вакуума, а также выбор 
нормы собственных векторов оператора эволюции. Ненулевая масса по-
является как квазиклассическая поправка, которая выражается через 
гиперэллиптический интеграл. 

 
Keywords: Yang — Mills equations, nonlinear plane wave, Green function dia-

gonal. 
 
Ключевые слова: уравнения Янга — Миллса, нелинейная плоская волна, 

диагональ функции Грина. 
 

1. Introduction. On Nahm models 
 
Underlying ideas for this investigation, related to the classical Yang — 

Mills (YM) theory reductions, were taken from works of Baseyan [3], Corri-
gan [6] and Nahm [8]. 

This paper is a direct development of author's results [10] in which one-
dimensional model, immersed in SU(2) YM theory, was studied in the con-
text of Nahm model. The author's main result [10] is a demonstration of ex-
istence and evaluation of nonzero quantum correction to action against clas-
sical zero energy (representing mass) as a consequence of the proposed mo-
del. The one-dimensional Yang — Mills — Nahm models were considered 
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from algebrogeometric points of view. A quasiclassical quantization of the 
models is based on Maslov version of path integral construction and its zeta 
function representation in terms of a Green function diagonal for an auxilia-
ry heat equation with an elliptic potential. The Green function diagonal and, 
hence, the generalized zeta function and its derivative are expressed via so-
lutions of Drach equation [15] and, alternatively, by means of Its — Matveev 
[19] formalism in terms of Riemann theta-function. The approach is based on 
Baker-Akhiezer functions for Kadomtsev — Petviashvili equation [12]. The 
quantum corrections to action of the model are evaluated. The fields from 
the class of elliptic functions are properly studied. For such model, which 
field is represented via elliptic (lemniscate) integral by construction, YM 
field mass is defined as the quantum correction, in the quasiclassical approx-
imation it is evaluated via hyperelliptic integral. 

The model, via the Atiyah — Drinfeld — Hitchin — Manin — Nahm 
(ADHMN) construction of static monopole solutions, is related to Yang — 
Mills — Higgs theories in four dimensions in the Bogomolnyi — Prasad — 
Sommerfield limit. The ADHMN construction   — equivalence between 
self-dual equations, one — unidimensional, the other in three dimensions (re-
duced Euclidean four dimensional theory by deleting dependence on a sin-
gle variable), see [16]. 

The weak point of description starting from the 1 + 0 Nahm model is 
namely the one-dimensionality of the reduction that provoke ambiguity of 
the interpretation of such correction as the mass. 

Let us list basic elements of this paper construction. 
1. Yang — Mills equations in PseudoEuclidean dimensions. The equa-

tion for YM field T  from semisimple compact gauge group in covariant 

form reads as  

= 0,T   (1) 

whence , = 0,1, 2, 3  , the time variable is 0 = , =1; kx ct c x  — space variab-

les. For the gauge fields =T T 
 , where  

= [ , ], = [ , ],T T T T T T                  (2) 

one has the covariant equation  

[ , ] [ ,[ , ]]
[ , ] = 0,

T T T T T T T T
T T

           

  

        



 (3) 

as written, e. g., in Faddeev — Slavnov book [2]. 

The reduction via independence on kx , k = 1, 2, 3; setting 0 =x t , choo-
sing the Hamilton gauge 0 = 0,T  gives  

2

2 = [ [ , ]], [ , ] = 0.k k
j j k k

d T dT
T T T T

dt dt
 (4) 



1 + 1-мерные уравнения Янга — Миллса  

 

29 29

The self-dual equations [6],  

= ,i
ijk j k

dT
TT

dt
  (5) 

imply Eqs. (4). 
For illustration we would use 2 x 2 matrix gauge group (isospin group 

SU(2)) and the basis of Pauli matrices i  , expanding = k
kT A  . Equalizing 

terms by k  and evaluating sums one goes to the vector form  

( )
.

j p pk k
jpk

j j j j p j j pk k
jpk jpk

A A A i A i A
iA A A iA A A i A A i A A

        

           


 

      
     


 (6) 

2. YM equations: vector form, Lorentz gauge. Rescaling the vector po-
tential we return the self-action charge parameter   to rewrite the YM 
equation keeping the same notations  

2 (2 2 ) = 0,k k k kA A A A A A
        

     
  (7) 

= 1, 2, 3,k  where, 0A


 is expressed from the Lorentz gauge  

1
0 0= ,k kA A 
 

 (8) 

e. g. see Konopleva — Popov book [7]. The difference is in that we use real 
time variable. 

The units are chosen so as velocity of light in vacuum = 1c , hence 
2
0= .k k    

Quantization is performed in Faddeev — Popov works [4] and presented 
in details icluding perturbation technique in Faddeev L. [13]. Recently we 
evaluated correction to the mass for the Nahm reduction of YM theory by 
means of quasiclassical asymptotics [10; 12] developing its renormalization 
in [16] with applications to the special case of Heisenberg chain equation, 
that differs from Nahm case only by physical origin and rescaling. 

3. Regularization (renormalization) as expalnation of nonzero mass 
appearance by quantization Faddeev: «Sidney Coleman coined a nice name 
dimensional transmutation for the phenomenon, which I am going to describe. 
Let us see what all this means». 

«Through these (free particles) solutions are introduced via well defined 
quantization of the free fields. However the more thorough approach leads 
to the corrections, which take into account the selfnteraction of particles» 
[13]. 

4. The task of the present work is the derivation and solution of the 
field equations for a class of the two dimensional models. The result of the 
reduction of the basic YM equations and the corresponding Lagrangian is 

similar to the one-dimensional one [10]: we obtain 1 + 1 4  (phi-in-quadro) 
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model equations with the zero mass term and coefficients that depend on 
algebraic closure of a matrix anzatz for the gauge fields that fix the model. 
The stationary and directed waves (Sec.(3)) are thought as quasiperiodic so-
lutions of the model equations that are expressed in terms of elliptic func-
tions. Its quantization (Sec.(5)) is again performed by means reduced La-
grangean (Sec.(4)) for quasiclassical Feynman — Maslov integral, which 
evaluation and quantum corrections to action (Sec.(6.3)) is based on the men-
tioned technique of the generalized zeta-function renormalization in terms 
of the nonlinear Drach equation (Sec. (6.1)). It is derived for the Green func-
tion diagonal (within the heat kernel formalism) and gives polynomial solu-
tions in elliptic variables. 

Extra variables of arbitrary dimensions (Sec.(5.4), App.) are accounted 
for the model applications of the solutions in elementary particles physics. 

 
2. The case of 1 + 1 dimension and reductions 

 
2.1. General equations in the vector form and Nahm reduction 

 

In 1 + 1 space, the classical YM theory [11], yields Eq. (3) with the Hamil-

ton reduction 0 =0T , that gives  

 
[ , ] 2[ , ] [ , ]

[ ,[ , ]] = 0,
k k s s s k s s s k s s k

s s k

T T T T T T T T
T T T

         



                   (9) 

Nahm reduction =s sT A  simplifies it as  

3

[ , ] 3 [ , ]
[ ,[ , ]] = 0,

k s k s s k s s s k

s s k

A A A A A A
A

     
  

       



 (10) 

that fails in 1+1. Namely, taking k = 1  

1 1 1 1 1 1 1 1 1 1
3 2 3

1 1 0 1

[ , ] 3 [ , ]
[ ,[ , ]] = [ ,[ , ]] = 0,s s s s

A A A A A A
A A A

     
      
       

  


 (11) 

one arrive at ODE, while for k=2 we have  

2 1 2 1 1 2 1 1 1 2
3 3

2 2 1 1 2 2

[ , ] 3 [ , ]
[ ,[ , ]] = 3 [ , ] [ ,[ , ]] = 0,s s s s

A A A A A A
A A A A A

     
        

       
    




(12) 

that necessarily reduces to 1D case. 
 

2.2. Novel reduction 
 

We use the Lorentz gauge, more natural for waves description and for 
the vector form (7) as more transparent. So, let us consider alternative (com-
pared to Nahm one) proposal of reduction: the field is specially prepared as  

= ( , ) ,k k kA x t s
 

 (13) 
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where ks


 are constant vectors in isotopic space. It may mean that a particle 
space state component is linked with the isotopic one. Plugging (13) in (7) 
and returning to low indices, write  

0 0 0 02 (2 2 )
2 (2 2 ) = 0.
k k k k k k k

j j j k k k j j k k j j

s A s A s A
s s s s s

   
    
      

     

    


      (14) 

The Eq. (8) in 1+1 reads  

0 0 1 1 1= ,A s 
 

 

so, taking the Eq. (7) along the reduction, we write  

1
0 1 1 1 0

1 1
0 1 1 1 0 1 1 1

2 (2

2 )
2 (2 2 ) = 0.

k k k k

k k k

j j j k k k j j k k j j

s s s

s s s
s s s s s

   

  
    



 

     

       
      

  

   

    
 (15) 

Scalar product of (15) with ks


 gives  

2 1 2
0 1 1 1 1

2

( , ) 4 ( ) ( , ( ))
4 ( , ( )) = 0,

k k k k k k

k j j k j k j

s s s s s s
s s s s

   
   

     
  

     


     (16) 

because 1( , )=0.k ks s s
 

 Or, finally  

2 1 2 2
0 0 1 1 14 ( ) 4 = 0,k k k kj k j jC C            (17) 

where  

0 1 1 1=( , ( ))/( , ), =( , ( ))/( , )k k k k k kj k j k j k kC s s s s s s C s s s s s s   
           

 

or, for normalized ks


,  

2 2
0 1 1= 1 ( , ) , = ( , ( , )) = 1 ( , ) .k k kj k k j j k j kC s s C s s s s s s s  

        
 

Note also that  

2 2
02 2 1 121 03 3 1 131=1 ( , ) = , =1 ( , ) = .C s s C C s s C 

   
 

Plugging it in (18) gives  

2 2
1 1 1
2 1 2 2

2 02 2 0 1 1 12 2
2 1 2 2

3 03 3 0 1 1 13

4 (1 ( , ) ) = 0,
4 ( ) 4 = 0,
4 ( ) 4 = 0,

j j j

j j j

j k j j

s s
C C
C C

    
       
       





 
   
   

 



 (18) 

where  

2 2
02 2 1 121 03 3 1 131=1 ( , ) = , =1 ( , ) = .C s s C C s s C 
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For orthonormal vectors ( , )=i k iks s  , one have  

0 1 1= 1 , = 1 ,k k kj jkC C    (19) 

that yields  

2 1 2 2
1 0 1 14 (1 ) ( ) 4 (1 ) = 0,k k k jk k j j                (20) 

or, expanding  

2 1 2 2 2 3
1 0 1 14 (1 ) ( ) 4 4 = 0.k k k k j j k                 (21) 

The system reads  

2 2 2
1 1 2 3

2 1 2 2 2 2
2 2 0 1 1 2 1 3

2 1 2 2 2 2
3 3 0 1 1 3 1 2

4 ( ) = 0,
4 ( ) 4 ( ) = 0,
4 ( ) 4 ( ) = 0.

    
       
       





 
    
    





 (22) 

A choice of 1 =0,  gives  

2 2
2 2 3

2 2
3 3 2

4 = 0,
4 = 0.

   
   






 (23) 

The minimal choice in (13) is  

1 2 3=0, = = .     

It is the superposition in spin and isospin states. Then, for the = 1k  we 

obtain zero identity, for = 2, 3k  we have the same equations of known 
4  

model with zero mass.  

2 34 =0.    (24) 

It is the case that is maximally close to the Nahm one, but in 1 + 1. 
 

3. Towards a solution 
 

3.1. Projecting technique application 
 
Consider an equation  

= ( ),F   (25) 

for arbitrary dependence in the r. h. s. Denoting  

= , =t xu v   (26) 

gives the system  

= ( ( ) ),

= 0.

x

t x

t x

u v F v y dy

v u





  (27) 
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The projectors [14]  

1 1)1
=

1 12
P

 
  

 (28) 

split the linearized system (27) in d'Alembert manner. The identity  

1 2( ) =P P    (29) 

reads as transformation of fields and its inverse.  

1
= ( ),

2
1

= ( ).
2

u v

u v

 

 
 (30) 

Acting by the projectors on the evolution system (27) yields  

1
= ( ( ) ),

2
1

= ( ( ) ),
2

x

t x

x

t x

F dy

F dy





   

    




 (31) 

that describes interaction of essentially one-dimensional waves — gives a 
next step to the Nahm model. Asymptotically, for a localized in space solutions, 
otherwise for a specified initial data = 0  we have  

1
= = ( ( ) ),

2
1

= ( )),
2

x

t x F dy

F



 


   

 (32) 

if 
1 1

= , = ( ), = ( )
2 2

x t x t     . 

In the case of the Eq. (35) it looks as nonlinear cubic oscillator  

2 3= 4 .    (33) 

The equation (33) has elliptic solutions [6], see details in the Sec. (6.1).  

 
3.2. A path to wavetrains as eventually particles wavefunctions 

 
Just remind that the anzatz with <<1, = , =x x t t    ,  

= ( , )exp [ ] . .,A x t i kx t cc      (34) 

after plugging in (24) and holding nonlinear resonance terms (e. g. [10]) in 
the first order by the small parameter   yields, taking into account the dis-
persion relation = k   and with the rule  

= .t tA A   (35) 
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It leads to the integrable (in fact - ordinary) equation  

2
* 26

= ,t xA A A A
ik


  (36) 

that could be solved in terms of elliptic functions. 
In the case of (23) one can obtain approximate solution by the similar 

anzatz with << 1 ,  

3= ( , )exp [ ] . ., = ( , )exp [ ].A x t i kx t cc B x t i kx t           (37) 

The same manipulations in the first order by the small parameter   
yields  

2
* 2 * 2

2
* 2 * 2

6
= ( ),

6
= ( ).

t x

t x

A A A B B A
ik

B B B A A B
ik





 

 
 (38) 

It is also solvable as a system of ODE. 
 

4. Lagrange density reductions 
 
The Lagrangian density is equal to (see, e. g. [2])  

0
0 0 0

1 1 1 1 1
= = ( ) = ( ),

4 2 2 2 2
i ik

i ik ik ik i iT T T T T T T T T T
  
         

  (39) 

the fields are normalized as in [7]. The definition (2) of the tensor T


 com-

ponents with account for Lorentz gauge (8)  

1
0 0= k kA A 
 

 (40) 

gives  

, ,= 2 [ ],T A A A A        
   

 (41) 

see again [7]. The time-space components of the tensor are  

1 1
0 0 0= 2 [( ) ],k i

i k k k i
i

A A
T A A

x t
  

      
 

 
 

 (42) 

the sum by k  is implied. The 3D subtensor looks as (41). The reduction (13) 
reads  

1 1
0 0 0= 2 ( ) [ ]k i

i k k i k k i k i
i

T s s s s
x t
 

    
      

 

    
 (43) 

and  

( ) ( )
= 2 ( ) [ ].i k

ik i k i k i k
k i

x x
T s s x s s

x x
 

 
 

  
 

   
 (44) 
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Its 1 + 1 space version for the SU(2) gauge (compare with [12]) gives  

2
1 11 1

0 0 1 1 0 12= 2 ( ) [ ]i
i i i i iT s s s s

x t x
 

    
    

  

    
 (45) 

and  

1 1= 2 [ ].i k
ik k i i k i k i kT s s s s

x x
 
  

 
  

 

    
 (46) 

Then  

2
1 11 1

0 0 0 1 1 0 12

2
1 11 1

0 1 1 0 12

= ( 2 ( ) [ ])

( 2 ( ) [ ]).

i
i i i i i i

i
i i i i

T T s s s s
x t x

s s s s
x t x

 
  

 
  

 

 

 
    

  
 

    
  

     

   
 (47) 

In the case of 1 =0,   

0 0 = ( ).i i
i i i iT T s s

t t
  


 

   
 (48) 

Similarily  

1
1 1 1 1

1
1 1 1 1

1 1

= ( 2 [ ])

( 2 [ ])

(2 [ ])( 2 [ ])

i i
ik ik i i i i i

k k
k k k k k

i k
i k i k k i i k i k i k

T T s s s s s
x x x

s s s s s
x x x

s s s s s s
x x

  
 

    

 
   

  
   

  
 

    
  

 
    

 

      

    

     

 (49) 

and, for normalized is


,  

1 1

1 1

2 2 2

=

4 [ ][ ].

i i
ik ik

k k

i k i k i k

T T
x x x x

x x x x
s s s s

   

  

  

   
 

   
  

 
   

 

 

   
 (50) 

Evaluating, 
2[ ][ ]=1 ( ) =1 ,i k i k i k iks s s s s s     

     
 one arrives at  

3
2 2 2 2 2

2

= 2 4 ( ).i i
ik ik i k k kT T

x x
 

    
 

 
 

 
 (51) 

For the case of 1 =0,  one have  

22
2 2 232

2 3= 2( ) 8 .ik ikT T
x x


  


 

 

 
 (52) 
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Finally, the Lagrange function is  

2 2 2 2 232
2 3

1
=

2
1

[( ) ( ) ] 2 .
2

i i

t t

x x

 


  

 
 

 


 
 


 (53) 

In the case 2 3= =    it is simplified as  

2 2 2 4= 2 ( ).t x x       (54) 

It is coinside with one of classical 
4  model case, derived and used, after 

reduction in [12] for quasiclassical correction theory. The Euler equation for 
(54) coincides with (24). 

 
5. Generalized zeta-function regularization of Maslov continual integral 

 
5.1. Action integral expansion 

 

The energy evaluation is based on calculation of the evolution operator 
determinant. Its divergence is compensate by a special choice of the theory 
basic parameters using a freedom in the definitions. We briefly explain its 
origin as well as the small parameter, proportional to   used in the quasi-
classical expansion. 

The approach was presented by Maslov in [17].The action functional on 

a quantum vector field = { , = 2,3}   


  is defined as integral over spa-

ce-time stripe [0, ], dt x 


   

2 2

0
=1

1 1
( ) = ( ) .

2 2

d

d
n n

S V dxdt
t x

   
                

 
 

 

  (55) 

We adjust the regularization (renormalization) scheme [10; 16] to the 
problem under consideration, having in mind the Lagrange function (53). 
The regularization consists of two steps. First is based on the assumption, 
that for a vacuum state the corrections should vanish [17]. 

Let us expand the action integral around a specific classical field 


 over 

1 + d space-time.  

= j j
j

w   
    (56) 

with the appropriate basis j


 and approximate (55) as  

2

,

( ) = ( ) ( ) ,j k
j k j k

S
S S w w

w w
  

 
 

  
  (57) 
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that, in turn, defines quasiclassical form of the path integral  

2

( ) ( ) ,

( )i
j ki i

S S j k j k
f

f

S w w
w w

e D e e dw
 





 




 
 

 





 
             (58) 

with 


 as the classical path with boundary conditions (0, ),x


 ( , )x 


 and 

j


 as a basis. 

Plugging (56) into (55), we obtain for the second derivative  

2

0
=1

( ) = ( ) ,
d

j jk k
j kd

nj k n n

S
V dxdt

w w t t x x





  
   

   
         
   

      
  (59) 

where  

= .j k j kV V   
    
 

 (60) 

For the basic functions k


 from a Hilbert space    

2 22

2 20
=1

( ) = ( ) .
d

j j
j kd

nj k n

S
V dxdt

w w x t





 
   

  
       

   

     


 (61) 

 
5.2. Rescaling the integral 

 
Let us denote ,   as time and space scale parameters,   is used as in-

teraction parameter. The equations of motion as (24) determine a link be-

tween them. Introducing dimensionless variables =x x 
 

, =t t   we res-
cale as  

2 22 21 2
2 2 20

=1

( ) = ( ) .
d d

j j
j kd

nj k n

S
V dx dt

w w x t 

      
 

            
   

 
   


 (62) 

The factor by the integral defines the quasiclassical expansion parameter, 
its value being small, allows to cut the expansion at some level. A link be-
tween   and   is found either from evolution equation (38) (dispersion 
relation in classical mechanics) or from realation between momentum, ener-
gy and mass in quantum theory. To be sure that a contribution of the last 
term is also of order one, we use a link between scale in time   and con-
stant of interaction   that is defined in rather ambiguous way via renormal-
ization procedure (see Sec. 6.3). 

Jumping back into (58) we write the internal factor as  

2 22
21 ( )0 2 2 2, =1

,

d d j ji d V dx dt w wj k j k
x tj k n ne dw f

f

       

          
   

  

 
   

 


 (63) 
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where ( )V 


 acts as prescribed by (60)  

[ ( ) ] = .j jV V   
   
 

 (64) 

In the case of the Lagrangean (53) the matrix V  in the isotopic subspace  

2 2
11 32 2

2
12 21 2 32 3

2 2
22 23 3

= = 4 ,

= = = 4 ,

= = 4 .

V V

V V V

V V







 
  

 

 (65) 

Transformations in both spaces   and   are changing definition of a 
principal state of the theory. So, if one substitute  

= ,j j
j a     (66) 

so that  

= ( ) .j j jV v    


 (67) 

The determinant of the matrix V  is zero, hence eigenvalues are  

2 2 2
0 1 2 3=0, = 4 ( ).v v     (68) 

The self-action of the new basic states  

0 1 10 3 2
1 2 1 2

2 3

= , =j j jJ  
   

 
   (69) 

is defined by correspondent equations that yields in different mass correc-
tions for the principle fields. 

 
5.3. The final action: spectral zeta function 

 
The second step of the renormalization is following; introduce a new 

normalization parameter r of the basic functions in the Maslov integral con-
struction [17]. We can rewrite the integral by introducing a scalar product  

1 * 2

0
( , ) = =k j k j jkdx dt r      

   


 (70) 

and an operator  

2 2 2
2

2 2 2 2
=1

= ( ) .
d d

n n

i
V

r x t 
   

  
  

      
  




  (71) 

The quasiclassical (Maslov) functional integral (58) is written as  

2

( ) ,

( , )

.

jkr j ki
S j k

f
f

w w

e e dw


   





 





 (72) 
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For the Hermitian   the eigen basis chosen yields  

2

( )
j ji

S j
f

f

w

e e dw




 


  (73) 

and, after Gauss integrals evaluation,  

1
( )

2( ) ,
i

S

j
j

e





  (74) 

having in mind that the zero values do not contribute, and the degeneracy of 

the eigenvalues j  account, formally,  

( )

.
det[ ]

i
S

e





 (75) 

To rewrite the determinants of both operators in a form, which allow the 
subtraction, we use a generalized zeta-function:  

( ) = ,s
j

j

s 
 (76) 

where j  are nonzero eigenvalues of  . Such definition of the generalized 

zeta-function should be interpreted as analytic continuation to the complex 
plane of s from the half plane , >s    in which the sum converges. The 

right side derivative relation with respect to s at the point = 0s  define the 
determinant  

ln(det )= (0).'  (77) 

The generalized zeta-function (76) admits the representation via the 

Green function of the operator  . A link to the Green function diagonal 

elements (heat kernel formalism) has been used in quantum theory since 
works by Fock (1937) [18]. The zeta function in 1+d space is constructed 
through a set of transformations on the heat equation Green function, , ,t t   
extended for the whole axis  

 

 

, , , , =

( ) ( ) , ) .

g t t x x

t t x x



   

     
 

 

 


 (78) 

Boundary conditions on the Green function are chosen the same as for 
the base functions in Maslov representation and an additional condition is 
applied  

 <0 , , , , 0.g t t x x    
 

  (79) 
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The freedom in a vacuum choice allows to divide 0=L L . In the case of 
1 + 1 space, it yields for (68)  

2 2 2
2 2 2 2

2 32 2 2 2= 4 ( ) ,
2

i
L C

r x t
     

  
  

        
 (80) 

while the function  

2 2 2

0 2 2 2 2=
2

i
L C

r x t
 

  
  

      
 (81) 

defines the vacuum part, that should be extracted as the first step of a 
renormalization. Here the constant C  depends on the particular classical 

solutions that form the potential 
2 2 2 2

2 34 ( )     minimum value. We can 
build the renormalized zeta function by the extraction as the first step: 

    11

00 0

1
( ) = , , , , , , , , ,

( )
s

L Ls g t t x x g t t x x dxdtd
s

    
  

     (82) 

while the second step of the renormalization is realized by the special choice 
of the normalization constant r. 

 
5.4. Extra variables 

 

Working with a 1+d space, the calculations are organized as follows. For 
construction of the generalized zeta function it is convenient to use the 
property (see appendix for details)  

= ,L LL a ba b
g g gL  (83) 

valid for the operators ,a bL  dependent on different variables. 
It is also useful to introduce an additional function  

1

0
( ) = ( , , , , ) ,L La a

g t t x x dx dt         
  

 (84) 

for which (83) holds as well. For one-dimensional classical problem solu-
tions  

2
2 2 2 2

1 2 32
1

= 4 ( ) ,L A
x

   
 

   
 (85) 

where  

2=
2

i
A

r


 



 (86) 

with the explicit form of the classical problem solution ( )i x   already speci-

fied. For the first renormalization it is enough to restrict 0L  to the space vari-
able only.  
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2 23
2

2 32 2
=2

= , = ,
n n

L Ac L A
t x
 


    (87) 

where 
2

2
2=c




. 

Integrating in (84) we derive the expressions for La
   

22
= ,

4L A


 
 (88) 

3
= .

4L A

 

  (89) 

We transform the Green function 
1Lg  for (118) to extract A  out of it res-

caling =
| |

A

A


 , and arriving at  

2 2 2 2
2 3 01

0

4 ( ) ( , , ) =

( ) ( ).

L A
A

A

i g x x

x x

    


  

 
   

 

 (90) 

Final form of zeta function is  

 

1
2 2

2
2

1 00

( ) =| |
2 ( )

( , , ) ( , , ) .

d d

s
d

d
s

A L A L A A

ic
s A

s

g x x g x x dxd

 

   










 

 (91) 

At this point the renormalizing factor 2r (often referred to as the mass 
scale) is chosen to cut out all logarithmically divergent terms arising from 
differentiation of sA   and possibly the Mellin integral as well. It is im-
portant to stress, that the choice of its value has impact on quantitative re-
sults and is not necessarily obvious. On purely mathematical level 2r  can be 
viewed as a free parameter of the theory (a reason for keeping it unspecified 
in works of Konoplich?), but it seems so only because we usually are unable 
to construct the whole propagator, which would allow us to use the normal-
izing condition of the propagation operator. The propagator  

0< < 0

( )

0

< | | >=

< | | >< | | >,

i
TH

T T T

i i
T T H T H

T T T

T

e

e e


 

   





   

 





 



 
 (92) 

properly set the value of 2r  (checked by a sample use of the method in the 
case of harmonic oscillator). Yet, to obtain physically relevant results one has 
to find a way of estimating the normalising factor. This problem will be dis-
cussed in phi-4 context. 
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6. Elliptic solutions of Nahm-like reduced model 
 

6.1. Drach equation 
 
The asymptotic of the solutions of the (24) is found via (33). In turn, the 

equation (33) that is a rescaling of the Nahms' one [6], that accounts the sel-
faction constant ε. Inverse rescaling =   gives  

3( )=4 .z   (93) 

Integrating (93) includes a constant of integration ( parameter) b   

2 2 2 4( ) =( ) .b    (94) 

It corresponds to the case m = 0 of the stationary 
2  model. Solution of 

Nahm equation — inversion of the elliptic (lemniscate) integral yields the 

Jacobi sn function with the imaginary module =k i : = ( , ).bsn ibz i   

  0 04 4 2 2

1
= = ,

1 1
bd dt

z
bb t t

 

   
   (95) 

so the constant b  enters the solution as amplitude and space scale parameter. 
 

6.2. Drach equation for the Green function diagonal 
 

Take a Laplace transform 0
ˆ ( , , )Lg p x x  of the Green function, defined by 

(78): ˆ( , )= ( , , )LG p x g p x x  is a solution of bilinear equation [10]  

2 22 ( ) 4( ( ) ) 1=0.GG G u x p G      (96) 

Such equation was introduced by J. Drach in other context [15]. In a case 
of reflectionless and finite-gap solutions is solved via polynomials (in p) 

,P Q   

( , ) = ( , )/ ( , ),G p x P p z Q p z  (97) 

where 
2= ( ; ).z cn bx k  Plugging (97) yields  

2 2 2( (2 ( ) ) ) ( )) =0,b PP P PP p u P Q          (98) 

the primes denote derivatives with respect to z, while  

 2

( ) = (1 )(2 ),
( ) = 6 1 .
z z z z

u z b z
  

 
 (99) 

The polynomials  

2
1 2

5 4 3 2
4 3 2 1 0

= ( ) ( ),
= .

P p P z p P z
Q p q p q p q p q p q

 
    

 (100) 
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A substitution of (100) into the equation splits in the system  

1 2
2 2

2 1 1 1 1 3
2 2

2 1 1 1
2

2 1 1 1 2 2 1 2
2

1 2 1 2 1 2
2

1 2 1 2 2 1 2 1
2 2

2 2 2

2 = 0,
2 2 (2 " ) = 0,

( (2 2 ( ) )
( )) 2 ) (2 ) = 0,

(2 (2 )
( ) )) 2 = 0,

( (2 ))

P u q
P P uP b P P q

b P P P P
P P P P P u P P q

b P P P P P P
P P P P P uP P q

b P P P P

 






 



  

 

   

 

 

  
     

  
     

  
    

  2
2 0 = 0.q

 (101) 

The arguments in (101) are omitted. The case of Nahm equation yields [10]  

4
4 3=0, = 21 ,q q b  

8
2 1 0= =108 , =0,q q b q  

hence 
2 4 2 4

1 2( )= 3 ( 1), =18 36 .P z b z P b z b z     

2 2 4 2( )= ( 3 )( 3 )(12 ),Q p p p b p b b p     (102) 

where the polynomial Q simple roots ip  are ordered for real .b  Finally,  

=5

=1

= ( ),
i

i
i

Q p p  (103) 

where the polynomial Q have the simple roots ip  and reflection symmetry 

reduction .  

 
6.3. Mass as the correction 

 

Let us pick up the expressions determining ˆ( )p , integrating by period:  

2 2 4 2 4ˆ( ) = ( 3 ( 1) 18 36 ) /2 .p p b z p b z b z dx Q      (104) 

Going to the variable z, and integrating,  

   
         

4 2

4 2

ˆ( ) = [6 2

36 3 3 ]/ ,

p b K i p K i

b K i E i b p E i K i Q

  

   
 (105) 

that gives the zeta function (91) via complete elliptic lemniscate integrals K(i) 
and E(i).  

 

1
2 2

2
2

1 00

( ) =
2 | | ( )

( , , ) ( , , ) .

d d

d s

d
s

A L A L A A

icl
s

A s

g x x g x x dxd



   










 

 (106) 
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Or, plugging the (103) and (105), 

 2 2 4

2 2 2 2

2 ( ) 3 ( ( ) ( )) 481
( ) = ,

( ) 2 ( 3 )( 3 )( 2 3 )(2 3 )
sl

K i p b K i E i p b K i
s dp

p p p b p b p b b p


  


    
  (107) 

rescaling, 
2 2= , =p p b dp dp b   and denote, ( )= , ( )= ,K i K E i E  

25 2 2 3( ) 48
( ) = ,

( ) 2 ( 3)( 3)( 2 3)(2 3 )

s

sl

Kp K E p Kb
s dp

p p p p p p


   


    
  (108) 

and the final form for energy corrections  

 
1

22 2
2

1 1 000
= ( , , ) ( , , ) .lim

2 | | ( )

d d
d

s

A L A L A Ad s
s

cl
E g x x g x x dxd

s T A s
    






 


 
      

 
 


(109) 

Compared to the expression in [10]. Finally, the gauge field particle mass 
in the quasiclasical approximation is evaluated as 

2
2 5

0

2 3( ) 48
= (0) = ( ) .lim

2 ( 3)( 3)( 2 3)(2 3 )

s s

ls

Kp K E p Kd
m b b p dp

ds p p p p p
  



  
  

   
    (110) 

 
Conclusion 

 
We have considered a nonlinear plane wave of SU(2) YM field (see e. g. 

[3]) in a 1 + d space. It is shown that the quantum correction to energy in 
quasiclassical approximation gives nonzero mass that is evaluated via hy-
perelliptical integral (109). Consideration of the 1 + d case in our paper al-
lows to apply multidimension theories as of the in [20]. More generally one 
can apply the generalized semiclassical Foldy-Wouthuysen transformation 
as e. g. in [9]. 

Of separate interest there is the special case in the Heisenberg ferromag-
net theory. It is the easy axis case when the «mass terms» tends to zero. It 
corresponds the special choice of the magnetic field B  value. 

 
Appendix 

 

0= (ln(det[ ]) ln(det[ ])) ,
2q c

i
E E L L

T
   
 


 (111) 

where  

2 2

0 2 2 2 2 2
=1

= ,
2

d d

n n

iTa
L C

r T t a x
 


  

       



 (112) 



1 + 1-мерные уравнения Янга — Миллса  

 

45 45

defines the vacuum state  

2 2

2 2 2 2 2
=1

= ( ) .
2

d d

n n

iTa
L V C

r T t a x
  


  

        


 (113) 

To explain (83), take 1, ( )j x  as eigenfunctions of 1L  with eigenvalues 

1, j  and 2, ( )n y  as eigenfunctions of 2L  with eigenvalues 2,n . Due to the 

independence of variables, 1, 2,( ) ( )j nx y   are eigenfunctions of 1 2L L  with 

eigenvalues 1, 2,j n  .  

( 1, 2, 1, 0 2, 01, 2,

1 2 , 1, 2, 1, 2,

( ) ( ) ( ) ( ))
= ( ).

( , )
j n j nj n

L
j n j n j n

x y x y
g eL

     


   
 

   (114) 

Considering the scalar product we use, we prove  

1, 2, 1, 2, 1, 1, 1 2, 2, 2( , ) =( , ) ( , ) ,j n j n j j n n         (115) 

1, 1, 0 2, 2, 01, 2,

1 2 1, 1, 1 2, 2, 2

( ) ( ) ( ) ( )
= ( ).

( , ) ( , )
j j n nj n

L
j nj j n n

x x y y
g e eL

      
   

 
    (116) 

It is convenient to introduce an additional function  

1

0
( ) = ( , , , , ) ,L Lg t t x x dx dt         

  
 (117) 

for which (83) holds as well. For one-dimensional classical solutions  

22
1

1 2
1

( ( ))
= ,

a V x
L A

x


  

  
 (118) 

2

2=
2

diT a
A

r








 (119) 

with the exact form of potential V  and solution   already specified. We 

restrict 0L  to the x  variable only. For the rest of the presentation 1x  will be 

denoted as x  and =n nG G . Next let 
2

2
2=

GT
c

Ma
.  

2 2

2 32 2 2
1

= , = .
n n

A
L L A

c t x

 


    (120) 

 
Thanks to G. Kwiatkowski for discussions.  
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