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FINITE-DIFFERENCE-STEEPEST DESCENT PARADIGM:  

NEW NUMERICAL METHOD OF FOCKIAN SPECTRAL PROBLEM 

 
A new numerical method that unify finite-difference and the method of 

steepest descent paradigms is suggested. It allows to avoid the wavefuncions 
space and spin variables division, that leads to superposition in spin projec-
tion stacionary states. The approach is verified by comparison with conventio-
nal methods.  

 
Предложен новый численный метод, объединяющий конечно-раз-

ностный метод и метод парадигм наискорейшего спуска. Это позволя-
ет избежать деления пространства волновых функций и спиновых пе-
ременных, что приводит к суперпозиции в стационарных состояниях 
спиновой проекции. Подход проверен путем сравнения с традиционны-
ми методами. 
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Introduction 
 

A foundation of quantum chemistry and solid state physics in its mo-
dern form is based on ideas of Hartree Fock (HF) method, that presents the 
best one-electron approximation [1]. The method is formulated as a system 
of nonlinear equations in which each electrom «lives» in a self-consistent 
field of other electrons. Namely the self-consistency is a source of nonlinea-
rity, that yields main dificulty of the system solution. It leads to a necessity 
of computer modelling/simulation of quantum multi-particle systems that is 
approved in [2]. The abundance of publications related to HF method forces 
us to very brief review. 

 
A brief history of the development of methods  

for calculating multi-electron systems 
 

Hartree proposed a method for approximate calculation of multy-elect-
ron wave function in 1929. However, he has not taken into account the sym-
metry of the wave functions of electrons under action of permutations. In 
1930, Fock developed Hartree's method taking the Pauli principle into account, 
it is now named as Hartree — Fock method (HF method). The effective 
results are obtained on a way of the HF method simplifications, known as 
density-functional theory (DFT) [3]. 
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There are also post-Hartree — Fock methods that improve Hartree — 
Fock calculations. In [4] a concise summary is presented over the existing 
fully numerical approaches to molecular calculations. The authors own two-
dimensional (2D) finite-difference relaxation method for Hartree — Fock, 
Hartree — Fock — Slater, multiconfiguration Hartree — Fock or Dirac — Sla-
ter calculations on diatomic molecules is described in details. 

Let us mention popular methods for calculating quantum many-particle 
systems as an important part of the brief history of the method develop-
ment. It is matrix and its diagonalization [5] for a Fockian or a Huckel-type 
models for Hamiltonian matrix of molecule by the non-canonical molecular 
orbitals (NCMO). 

In molecular states calculations of quantum chemistry the so-called 
molecular orbitals are used. The orbitals are localized in a limited spatial re-
gion of a molecule, for example a specific bond or in the case of a lone pair 
on a specific atom. They can be used to relate molecular orbital calculations 
to simple bonding theories, and also to speed up post-HartreeвЂ“Fock elect-
ronic structure calculations by taking advantage of the local nature of elect-
ron correlation. In solid state physics such localized orbitals are build using 
periodic boundary conditions that are known as Wannier functions, see for 
example [6]. 

The main problem of a realization of the mentioned methods is a choice 
of the basic functions for an eigen wave function of the Fockian [7]. 

The overview [13] touch early attempts to reduce the many-center prob-
lems to a somewhat one-center's concentrating on so-called two-dimensional 
finite-difference HF method (FDHF) Earlier review of the finite-difference 
approach to the problem is presented in [4], where authors speak about fully 
numerical HF methods for molecules. 

A continuous spectrum states formation that would be responsible for 
processes of ionization and recombinations are of extreme difficulty by 
means of localized or periodic functions, more exactly — the an elegant 
numerical procedure to find optimally localized set of generalized Wannier 
functions associated with a set of Bloch bands in a crystalline solid [10]. 

 
Basic ideas 

 
To avoid the mentioned difficulties of solution of the Fockian eigenvalue 

problem by means of variational principle, we suggest a direct application of 
finite-difference method. To accelerate the solution numerical exploration 
we use the steepest descent method. 

 
Aims and scope 

 
This paper introduces the novel numerical method that unify finite-diffe-

rence and the steepest descent paradigms. It unifies two main purposes: 
1) the effective numeric code that accelerates calculations especially wit-

hin an extent atomic systems; 
2) it allows to avoid the wavefuncions space and spin variables division, 

that leads to account of superpositions in spin projection stationary states. 
The approach is verified by comparison with conventional methods results. 
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Born — Oppenheimer approximation.  
Hamiltonian of an electronic system 

 
In the Born — Oppenheimer approximation, the nuclei of a molecule or 

a solid are assumed to be stationary. The Hamiltonian is written for a system 
of N  electrons, located in the field of a nuclei system:  

 
22 2

, ,

ˆ
2

J
i

i J i i j iJi i j

Z e e
H

m r R r r

    
 

  
    . (1) 

In the expression (1), 
i  is a sum over all electrons, i  is the electron 

number; 
J  is a sum over all nuclei, J  is nucleus number; JZ  is the charge 

of the nucleus with number J , expressed in charge e  of an electron; JR


 is a 

position of the nucleus J , the vector ir


 stands for a radius-vector for the 
electron with number i . 

Conventionally, if the energy eigenvalue problem is of interest, the sta-
tionary Schrödinger equation writes as :  

 ˆ = ,H E   (2) 

where     1 1 1= , , , , , , ,K N NR R r r  
   
  , 1 2, , N    are spin variables 

of the electrons. Since the electrons are fermions, the wave function must be 
antisymmetric in the variables of the electrons, that is, for example, reads  

         1 11 11 1, , , , , , , = , , , , , , ,K KN NN NR R r r R R r r    
       
    . 

It is convenient to mark electrons arguments simply with their numbers, 

for the case, we introduce the notation  = ,i ii r 


. Then  

 1= , , ,1, ,KR R N 
 
  . 

 
Notations. The essence of the Hartree — Fock method 

 

Within the framework of the Hartree — Fock method, the wave function 

 1= , , ,1, ,KR R N 
 
   is searched in the form of a Slater determinant 

composed of single-particle functions  
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We skip the nuclei positions parameters KR


. 

From the variational principle  ˆmin , H   the Fock operator compo-

nents for the spin-orbitals i  are derived. as follows:  

    ˆ 1 = 1j j j jF   . (3) 

Here the functions j  are spin-orbitals, and the ˆ
jF  are Fockians,  

  1
=1

ˆˆ ˆ ˆ=
N

j i i
i

F h J K


   , (4) 

      *
2

12

1ˆ = 2 2 1i j i i jJ dr
r

   


, (5) 

      *
2

12

1ˆ = 2 2 1i j i j iK dr
r

   


, (6) 
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m r R
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A prime by the sum means that a term with =i j  is skipped. The 

integration is carried out over the variables of particle 2, 12 1 2=r r r
 

, 
2 2 2

1
1 1 1

=
x y z
  

  
  

,  1 1 1 1= , ,r x y z


. It is assumed that the functions i  are 

orthogonal:    *
11 1 =i k ikdr  


. 

 
Orbitals. Standard method for solving the Hartree — Fock equations 

 
In order to solve the Hartree — Fock equations, the following transfor-

mation is usually carried out. The spin variables of the electrons are split off. 
Namely, it is assumed that a part of electrons have spin up, and the others 
have spin down. Therefore, the wave functions j  are taken in the form 

    0
, =

1j jr r 
 

  
 

 
 and other functions i  are taken as  

    1
, =

0i jr r 
 

  
 

 
. 

Substituting these expressions into the Hartree — Fock equations (3), the 

equations for the orbitals  j r


 are derived  

    ˆ 1 = 1j j j jF   . (7) 
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Here j  are spin-orbitals, and ˆ
jF  are fokians,  

      *
2

12

1ˆ = 2 2 1i j i i jJ dr
r

   


, (8) 

      *
2

12

1ˆ = 2 2 1i j i j iK dr
r

    


. (9) 

These equations (7) are also called Hartree — Fock equations, although 
the meaning of these equations is essentially different than (3). 

The solution of these equations (7) is sought in the form of series with 
respect to the basis functions =j jk kk

C  , where k  are the basis func-

tions. 
When we come to equations (7) from equations (3), the ability to calcu-

late magnetic phenomena correctly within the framework of the Hartree — 
Fock method becomes lost because we have predetermined the spins of the 
particles. Especially it relates to so-called frustration phenomenon [14]. 

However, the original Hartree — Fock equations can be solved diffe-
rently: the electron spin states can be calculated from the Hartree — Fock 
equations (7) for spin-orbitals, and then the orientations of the particle spins 
and magnetic phenomena can be calculated, taking into account the spin-
orbit interaction. 

 
Two equivalent forms of the Hartree — Fock equations 

 
Equations (3) are a special form of equations of more general kind:  

      ˆ 1 = 1 1 ,j j j j ji i
i j

F  


     (10) 

where obviously  

    *
1

ˆ= 1 1j j j jF dr  


, (11) 

    *
1

ˆ= 1 1ji i j jF dr  


. (12) 

It is the equations (10) that are obtained if we derive them from the 
variational principle neatly. 

Both forms of Hartree — Fock equations are equivalent. The operator ˆ
jF  

depends on the functions j  and is invariant under a unitary transformati-

on of the system of functions 1 , 2 ,  , N . By unitary transformations 

of the system of functions 1 , 2 ,  , N , any of these form of equations 
is transformed to another . 

The form (10) of the Hartree — Fock equations is more convenient for 
calculations. The equivalence of the two forms ((3) and (10) of the Hartree — 
Fock equations is shown in the literature [11]. However, not all books con-
tain such information. 
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The resulting equation can be written in the form  

    ˆ 1 = 1 ,j j j jS    (13) 

where  

        2
ˆ ˆ ˆ1 = 1 2 (2) 1j j j j i j j i

i j

S F F dr


     
 . (14) 

We multiply the equations (13) by k  by scalar product, that reads  

           * * * *
1 1 2 1

ˆ ˆ ˆ ˆ1 1 = (1) 1 2 (2) 1 1 =k j j k j j i j j k i
i j

S dr F dr F dr dr


           
    

   * *
1 2 ,

ˆ ˆ= (1) 1 2 (2) =k j j i j j i k
i j

F dr F dr 


     
   

   * *
1 2 ,

ˆ ˆ= (1) 1 2 (2) =k j j k j j k jF dr F dr      
   

   *
1̂= 1 1j k j dr   . 

We see that if    *
1 ,1 1 =k j j kdr  


, then the equality holds. 

 
The new method of solving the Hartree — Fock equations (3)  

by steepest descent method 

 
To suggest a new solution method, we use some geometric ideas. Let us 

define a curve ( )t  in thh functional space of the HF system solutions. 
Suppose the curve ends at some eigenfunction = (0)j   and hence 

mark the function by the index j , having ( )j t . Let's allocate in each point 

of the curve ( )j t  the components parallel to ˆ
j jS  , and the component or-

thogonal to ˆ
j jS   and introduce the factor   so, that:  

        ˆ= =j j j j j jS
 

      


. (15) 

Here   is a certain factor that is easily computed. Multiplying of the 
equality (15) by scalar product from the left side by ˆ

j jS  , we get  

 
    

 
*

12

ˆ 1 1
= 1 .

ˆ

j j

j

j j

S
dr

S









 

In this way,  

 
    

 
*

12

ˆ 1 1
ˆ= 1

ˆ

j j

j j j j

j j

S
dr S

S


  







, 
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 
    

 
*

12

ˆ 1 1
ˆ= 1

ˆ

j j

j j j j

j j

S
dr S

S



    





. 

Then it is natural to surmise that  j t , is obtained as a result of the fol-

lowing iterative procedure  

        =j j jt t t t 


        


 

under the condition of sufficiently small t  and for t   converges to the 
solution of the Hartree — Fock equations (13). Here > 0 , > 0 . The term 

 j t  


 is introduced to preserve the normalization and the value of   

has to be chosen from the condition of conservation of normalization. For 
sufficiently small t , we can take = 0 . Therefore, for 0t   we arrive at 
the equation  

    
 

*

12

ˆ 1 1
= 1 Sˆ

j jj
j j j j

j j

Sd
dr

dt S

         
 




 
. 

We calculate  

 
    

 
*

*
12

ˆ 1 1
= 1 .

j j

j j

j

S
t dr







  

This equation follows from (13) and corresponds to our equations (13) 
for eigenvalues. Then we arrive at the equation  

 
2*

j

2

t
= S

Ŝ

jj
j j j

j j

d

dt



       
  

. 

This equation is not very convenient for calculations, because in the 

process it is required to compute 
2ˆ

j jS  , and this is laborious. Hoever we 

can use the approximate relation  

 
2 2 2

jŜ t ,j j j    

that follows from (13), and to simplify the differential equation. This can also 
be done because the term j  affects mainly the normalization change, but 

normalization can always be corrected. We arrive at a more simple and 
convenient equation  

 
1 ˆ=j

j j j
j

d
S

dt t




 
     

 
. 
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It is even more convenient to rewrite this equation in the form  

   j= S tj
j j j

d

dt
 


    . (16) 

We have taken into account that the energies are negative for discrete 
states. The normalization in this equation is retained automatically. 

This form of the equation is relatively simple and understandable. We 
write out this equation in the original operators:  

         

   

*
2

j

ˆ ˆ1, 1, 2, (2, ) 1,1,
=

t 1,

j j i j j ij i j

j

F t t t F t dr td t

dt t





            




. (17) 

 
Calculation of particle spin states 

 
The solution of the equations (17) for t   gives the stationary solution 

of the equations. Equations (17) realize the method of steepest descent. In 
this case, we do not necessarily fall into the absolute minimum of energy, 
because there are local energy minima. Consequently, the result of solving 
the equations (17), in general, depends on the starting spin orbitals 

 = 0j t . 

Let's consider a concrete example. Suppose we calculate the spin-orbitals 
for the helium atom. Suppose that for = 0t  the spins of both electrons are 
directed upwards. It is not clear from the equations, by what mechanism in 
the particular case under consideration, the electrons can turn to make spins 

of electrons oppositely directed at t  . The fact is that the focian ˆ
jF  is an 

integro-differential operator. By itself, it can not transform the structure 

=
0

j
j

u 
  

 
 of j  function into the structure 

0
=j

jv
 

  
 

 The last term in (17) 

also can not change the structure of the column =
0

j
j

u 
  

 
. 

Numerical experiments show that in the solution of the equations (17), 
the correct orientations of electron spins are settled automatically with 
increasing t , if the orientations of the electron spins for = 0t  do not differ 
too much from those corresponding to the energy minimum. 

Nevertheless, there exist initial (0)j  such that the spins of particles 

with increase of t  can not turn around and take a position corresponding to 
energy minimum. So if in the two-electron system the particle spins are 
parallel to each other at = 0t , then in the solution of the equations (17) with 
increasing t  the particle spins can no be transformed although the energy 
decreases and the local energy minimum is achieved.The energy correspon-
ding to this local extremum is larger, since the exchange term is obtained not 
equal to zero. The situation corresponds, obviously, to unstable equilibrium. 
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The structure of the equation (17) does not allow us to get out of this local 
extremum, and this is apparently related to the structure of the original 
Hartree — Fock equations. In deriving the Hartree — Fock equations, one 
searches for a minimum of the energy functional, and calculates variation of 
the energy functional with respect to spatial variables. The orientations of 
particle spins are also independent variables, but the corresponding minimi-
zation of the energy functional over these variables has not been performed. 

It should be noted that the contribution of the terms '
iJ  and 1ĥ  does not de-

pend on the orientation of the spins, and only the exchange integral determi-
nes the contribution of spin-spin interactions of particles into the total 
energy value. 

It is not clear how one can modify the Hartree — Fock equations to exc-
lude local energy extremes corresponding to incorrect spin configurations. 
But it is relatively easy to propose some modifications of equation (17), 
which allow minimizing the energy functional over the spin variables. 

The simplest way is to introduce into the system of equations the forced 
oscillations of the spins of particles, which dump with time. This will allow 
the system to escape from local extremes and help the system to align the 
spins of the particles so as to find a stable configuration of spins and an 
absolute minimum of energy. Fortunately, the dead zone in which the 
spinning of spins to the right directions does not occur, is narrow. We 

introduce for each spinor = j
j

j

u
v
 

  
 

 the orthogonal spinor = j
j

j

v
u

  
   

. 

We modify the equations (17) as follows  

           

   

         

*
2

*
2

ˆ ˆ1, 1, 2, 2, (2, ) 1,1,
=

1,

t 1, 2, 2, 1, .

j j i j j i
j i j

j j

j j i j i
i j

F t t t F t t dr td t

dt t t

t t t dr t








 



            
 

      
 








 (18) 

Here the conservation of the normalization follows from the fact that the 
right-hand side is orthogonal to j . To preserve the orthogonality of the 

functions i , in the second line (18) a special summand is introduced  

     *
22, 2, 1,i j i

i j

t t dr t



   


. 

Here ( )i t  are some small rapidly decreasing functions. It is advisable to 

relate these functions ( )i t  to the norms of the derivatives 
 1,jd t

dt


. For 

example, for a numerical solution, we can take  

 
 

0t = * 0.1 * ( 1,1)j
j

t
random

t
 





. 
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Here the values from 1  to 1  are chosen randomly.  j t  is chosen so 

that the change  j t  due to of the introduced spin oscillations be small in 

comparison with the change of  j t  due to the energy changing to energy 

minimum. The spin oscillations introduced are small, but they are sufficient 
for the system to leave the dead zone and adjust the spins to achieve the 
absolute energy minimum. In addition, ( )i t  becomes negligibly small and 

tends to zero as the extremum point approaches. 
However, the block with the turn of the spins is still underdeveloped. It 

is possible to accurately calculate the operator turning the spins of particles 
in such a way as to minimize energy. The idea is fresh and not implemented 
yet. 

 
Some test ab initio calculations. Calculation of electron clouds  

and spin orientations in simple electron systems 

 
Below we show some examples of ab initio calculations electronic clouds 

and spin orientations of simple quantum systems. 
In Fig. 1, the right-hand side of the figure shows the electron clouds of 

the helium atom calculated by the method described above. It should be no-
ted that the electron spins are opposite directed, and the correct orientation 
of the spins is found by itself, it is the result of calculations. The calculated 
ground state energy 0 = 82.27 eVE   (experimental value 0 = 78.95 evE   [8]), 

calculated ionization energy 1 = 20.94 evE   (experimental value 

1 = 24.58 eVE   [9]). In this work, we did not have the goal of calculating the-

se energy characteristics with high accuracy but just wished to illustrate the 
proposed calculation method and show that it works. Obviously, using finer 
the difference grid, it is possible to increase the calculation accuracy. 
Although we understand that applying standard methods for solving the 
Hartry — Fock equations and choosing a very good basis system of func-
tions and the correct spin orientations, one can probably achieve the best 
accuracy. The advantage of the proposed method is its universality, which is 
very important, and also in the fact that the correct orientation of the spins is 
obtained automatically within this method. On the left side of the picture, 
the initial electron clouds are shown to start the calculations. They were 
especially initiated to be very different from the actual electron clouds of the 
helium atom, and even were taken primitive, to demonstrate the work out of 
the method. The starting cloud of the first electron fills the left half of the 
square (in reality, of the cube), and the starting cloud of the second electron 
is in the right half of the square (of the cube). Such a choice of starting clouds 
is made so that the starting clouds are orthogonal, although this is not 
important for the computations performed. We see that, as a result of 
computations, we received not only the correct electron clouds but, and 
most importantly, the correct orientation of the spins. 
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Fig. 1. Helium. On the left side, the initial electron clouds are shown. The computed  
electron clouds for the helium atom are shown on the right side. The electron spins  

are directed opposite; this is the result of calculations, and this fact is important 
 
In Fig. 2, the upper row shows the electron clouds of the lithium atom, 

calculated as described above. It is usually assumed that two electrons in the 
lithium atom are at the lower level and the spins of these two electrons are 
directed opposite, while the third electron is at a higher energy level and has 
one of two possible spin orientations. Simple logic suggests that in reality, 
the spin of this third electron should rather be in a superposition state 
because otherwise, the spin-spin interaction is only with one of two lower 
electrons, which is illogical. The superposition state of the spin of this third 
electron is shown by calculations. However, if the spin of this third electron 
is in a superposition state, then the spins of all three electrons must be in a 
superposition state, and then there must also be a splitting of the lower 
energy level. This is exactly what we are observing: the lower electrons have 
slightly different energies. The correct orientations of the spins are found by 
itself; it is an important result of calculations. The lower part of the figure 
shows the initial electron clouds to begin the calculations. The initial clouds 
are taken so that they are orthogonal to each other, and their orthogonality is 
achieved by the simplest means. We see that we obtained not only the 
correct electron clouds but also the correct spin orientations. 
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Fig. 2. Lithium. In the upper row, the calculated electron clouds of the lithium atom  
are shown. Electron spins have been calculated by a computer program. The spins  

of all three electrons are not pure states, but they are superpositions of states  
of spin up and spin down. In the bottom row, the initial electron clouds are shown 

 
The electron clouds of a boron atom, calculated in the same way as des-

cribed above, are shown in Fig. 3 in the top row. Here everything is about 
the same as in previous cases, but only the number of electrons is more. The 
lower part of the figure shows the initial electron clouds for starting the 
calculations, and the initial clouds are orthogonal to each other. 

 

 
 

Fig. 3. Boron. In the upper row, calculated electron clouds are shown.  
Spins of all electrons are calculated by the program. All electron clouds  

are superpositions of spin-up and spin-down. At the ground energetic level,  
the two electrons have almost pure spin states. Small displacements of the cloud  

centers are seen due to the repulsion of electrons at the same level. In the lower row,  
the initial fields of electron clouds are sown 
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Discussion 

 

An alternative method for calculating the wave function of electrons is 
called the DFT method (Density Functional Theory method). It is based on 
the ideas of Kohn and Sham (1960): the wave function of the ground state is 
restored with electron density [15]. We do not consider DFT-methods here, 
but it is quite possible to develop it on base of the ideas, presented here. 
Some problems However, after all, electrons define how matter is arranged 
internally, and what happens with it. All that we know about the design of 
atoms and molecules, we know only from calculations and from our ima-
gination. Therefore, the experimental researches are fundamentally insuffi-
cient in modern physics.The significance of the computational part of the 
work is extremely great in modern physics.  

 
Acknowledgement. Author thanks S. Leble for the essential contribution in litera-
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