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CENTRAL TANGENTIALLY-DEGENERATED HYPERSTRIPS
CH, OF RANK r OF PROJECTIVE SPACE P,

The article is devoted to the investigation of central tangentially-degenerated hyper-
strips CH . < P, . Representation is brought and existence theorem of the hyperstrip

CH_ is proved. Generalized normals of the 1st and 2nd genuses of the hyperstrip

m
CH!  are introduced. One-parameter bundles of generalized normals of the 1st and

2nd genuses in the neighbourhood of the 3rd order are constructed by interior invariant
way and it is shown that these bundles of normals are reciprocal relative to a field of
osculating quadrics.

It is shown that in each centre A < V, in a differential neighbourhood of the 3rd
order one-parameter family of equipping planes of a surface V, (in the sence of Car-
tan) is joined by interior invariant way. With the help of focal manifolds, assotioted

with the hyperstrip CH__, geometric meanings of some basic quasitensors of the hy-
perstrip CH' are explained. A structure of construction of a one-parameter bundle of

normals of the 2nd genus Ny,.;(A) of the hyperstrip CH | in the neighbourhood of the
3rd order is carried out.
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GAR-REALIZATIONS OF LINEAR AND UNITARY GROUPS
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1. Abstract
The following question going back to D. Hilbert is called the classical problem of

the inverse Galois theory: Given a finite group G, does there exist a Galois extension
N/Q with Galois group isomorphic to G?

This problem is not yet completely solved but it could be reduced by Matzat to the
question of the existence of GAR-realizations of finite simple groups.

A GA-realization of a finite, simple nonabelian group H over the field k is a
geometric Galois extension N/k(t) with Galois group isomorphic to Aut(H) under the
condition that N is a rational function field over k. GA-realization of H is called a
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GAR-realization if every geometric extension R/N" with k R=N"% is a rational
function field over k.

If k is Hilbertian (this is the case for k=Q%®=Q and for k=Q%®, for example), then
for any regular Galois extension N/k(t) there exists by the Hilbert's Irreduzibility-
theorem a specialization of t—aek together with a Galois extension over k with
isomorphic Galois group.

In this context we should mention a conjecture of Shafarevich, that Gal(Q /Q®) is
a free profinite group of countable infinite rank. By the result of Matzat this could be
proved, if we could find GAR-realizations for every simple finite group over Q""b.

The main aim of my PhD-thesis was to do this for the unitary group U,(p) for odd

p. One way was to use the character theory of groups of Lie-type, as will be now
shown.

For the classical groups over a prime field Fp res. over sz in the twisted case are

only the groups L(2) and U(2) are not yet known to have GAR-realizations over Qab.

2.Constructive Galois theory
In this section we recall some basic facts from constructive Galois theory.

Let G be a finite group with class vector C=(cl(C,),cl(C,),cl(C)), C;e G. Now set
Z(C)={0=( 01,02,0%) | sjecl(C), o10,05=1},
¥(C)={ce X(C)|<c,,6,,0:>=G},
I(C):=| Z(C)/Inn(G) | < n(C):=| = (CYInn(G)|.
We call n(C) the normalized structure constant of C, which is an lower bound for

the number of orbits of G, in its action via conjugation in the components.
There are two useful ways to determine n(C):

We have
()= 19120 2(e) () (e).
‘CG (Cl)‘ ‘CG (Cz )‘ ‘CG (Cs)‘ xelrr(G) ()
and also
Z(G)|
n(C)= ‘ .
[G]EZ(CZ)/IW(G) ‘CG (< 6,,0,,05 >)‘
If we set

Qc=Q{x () | 7elrr(G), i=1,2,3}),
we can formulate the Rigidity Theorem.
Rigidity Theorem: Let G be a finite group with a rigid class vector, i.e. with
I(C)=1, whose center possesses a complement in the normalizer of one of the
subgroups <C;>. Then there exists a geometric Galois extension N/Q(t) with

Gal(N/Q¢(1)=G.
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3.The strategy

Now we will show how we get the solution in the case of unitary group U,(p) with
odd p and odd n=2m+1. (The proof for even n and for L (p) is similar.)

First we fix the notation:

Let g be a power of p, G=GU,(q), @:G<GO> the extension of G by the graph
automorphism o,, 65 A—>A%=A" J=antidiag(L,...,1).

The strategy is now clear. First find two elements generating the group (35 Then
take a third one and show that the normalized structure constant is 1.

Since there is a classification of the finite primitive irreducible reflection groups
over an arbitrary field of odd characteristic due to Wagner, the simplest solution is to

choose as C; a regular element of the Coxeter-torus, which operates irreducibly and
primitively on the natural vector space. For C, we choose a quasi-central
automorphism, namely

CZZG::GO[ ; 5 jiCG(CZ):<_En>Spn-1(Q)

m+1

because —022 is a reflection. Now we can show that the C, together with the Coxeter-
torus does generate the desired group by excluding all other possibilities. In addition
this implies that n(C) has to be an integer.

It is a frequent observation, that the largest contribution to n(C) is due to the I-
character. This gives us a hint to take as third element an element so that the product of

the orders of the centralizers is close to the group order. This leads us to C;=a,
Co(c0)=0x(a).
To evaluate the formula for n(C) we make use of the Deligne-Lusztig-theory,

which gives us a partition of the set of the irreducible characters in the following way:
For all classes clg(t) of semisimple elements there exists a set

A= X112 Xrgy }- Itholds
Irr(G)= U, x(2)

A character y ey (t) extends to @ if and only if there is s=s”ecls(t).

Since only characters y ey (t) with t in the Coxeter-torus take values unequal 0 on
C, and the only t with t~t° are +E,, we have now only to look at the unipotent

characters.
The following trick introduced by G. Malle is quite useful:
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Since character values are polynomials in g we just look what happens for g—oo. If the
limes exists, it has to be the exact value for every q, because n(C)is an integer and the
number of summands in n(C) is independent from q.

We can express the unipotent characters of G, up to sign, with the help of the
Deligne-Lusztig-characters R, and the characters of the Weyl group W=S

i 2 P(wwy)R,,

ix¢:R¢:
‘ weWw
where wy,=J and gelrr(S,).
Using the known values of the R¢
Y C)=EH(n)).
Digne and Michel have recently proved that those unipotent characters, which are
canonically parametrized by the characters (of the the Weyl group W (B,.,) =S nz
2

can be written on the outer coset as
_1
(X¢)\G.5:Rw__ dw(WR,, .
W | war (s,)
The remaining unipotent characters take the value 0 on C,.
After some easy computation we get

R,(C)=R,(C)=R, " (1).
And now we see

A (1)>0g(x(CA(CIx(Ca)),

where 8q denotes the degree in g, unless y=1.
Thus we can prove
Theorem: Let G be the group U,(p), where n is odd and 2zpeP. Then G has a

GA-realization over Q%.
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& #l6acaoasifioal 48ioach Da0adaas+a 1 ofi, +oi 406iia Gal (Q / Q™) afioi fiaiaiaiay
i0lélia+iay adoiia n+aofiai 4anélia+iial oaida, Nalayony & ilotneaieh o0aceliactitiod
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efifiéaaiaaieh yoial Afidifia 48y oieoadiié ad6iii Uy(p). Efiiélicoy ésafineoeeaoep
Aadiada &lia+ito ideieocaino adoil iodaxaicé ¢ 0ai0eh 5adacoadia Ad6ii ocia Fe,
6aaéifi aiéacaoi i€ddopudp 04104io:



94

, Ada

Uk (p)

ofia

iay ao

7

G 4o 6ieoad

1€y

J4

1a2eao

o

naycu

ledadd na

~

)

il

Yoi



