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     CENTRAL   TANGENTIALLY-DEGENERATED HYPERSTRIPS 

 CH m

r
  OF  RANK  r  OF  PROJECTIVE  SPACE  Pn 

 

     The article is devoted to the investigation of central tangentially-degenerated hyper-

strips CH m

r
   Pn . Representation is brought and existence theorem of the hyperstrip 

CH m

r
   is proved. Generalized normals of the 1st and 2nd genuses of the hyperstrip 

CH m

r
   are introduced. One-parameter bundles of generalized normals of the 1st and 

2nd genuses in the neighbourhood of the 3rd order are constructed by interior invariant 

way and it is shown that these bundles of normals are reciprocal relative to a field of 

osculating quadrics. 

     It is shown that in each centre A  Vr  in a differential neighbourhood of the 3rd 

order one-parameter family of equipping planes of a surface Vr  (in the sence of Car-

tan) is joined by interior invariant way. With the help of focal manifolds, assotioted 

with the hyperstrip CH m

r
,  geometric meanings of some basic quasitensors of the hy-

perstrip CH m

r
  are explained. A structure of construction of a one-parameter bundle of 

normals of the 2nd genus Nm-1(A) of the hyperstrip CHm

r
  in the neighbourhood of the 

3rd order is carried out. 
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1. Abstract 

The following question going back to D. Hilbert is called the classical problem of 

the inverse Galois theory: Given a finite group G, does there exist a Galois extension 

N/Q with Galois group isomorphic to G? 

This problem is not yet completely solved but it could be reduced by Matzat to the 

question of the existence of GAR-realizations of finite simple groups. 

A GA-realization of a finite, simple nonabelian group H over the field k is a 

geometric Galois extension N/k(t) with Galois group isomorphic to Aut(H) under the 

condition that NH is a rational function field over k. GA-realization of H is called a 
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GAR-realization if every geometric extension R/NH
 with k R=NH

k  is a rational 

function field over k. 

If k is Hilbertian (this is the case for k=Qab
=Q and for k=Qab

, for example), then 

for any regular Galois extension N/k(t) there exists by the Hilbert's Irreduzibility-

theorem a specialization of tak together with a Galois extension over k with 

isomorphic Galois group. 

In this context we should mention a conjecture of Shafarevich, that Gal(Q /Qab
) is 

a free profinite group of countable infinite rank. By the result of Matzat this could be 

proved, if we could find GAR-realizations for every simple finite group over Qab
. 

The main aim of my PhD-thesis was to do this for the unitary group Un(p) for odd 

p. One way was to use the character theory of groups of Lie-type, as will be now 

shown. 

For the classical groups over a prime field Fp res. over F
p 2  in the twisted case are 

only the groups Ln(2) and Un(2) are not yet known to have GAR-realizations over Qab
. 

 

2.Constructive Galois theory 

In this section we recall some basic facts from constructive Galois theory.  

Let G be a finite group with class vector C=(cl(c1),cl(c2),cl(c3)), ciG. Now set 

 (C)={=( 1,2,3)icl(ci), 123=1}, 

(C)={  (C)<1,2,3>=G}, 

l(C):=(C)/Inn(G) n(C):= (C)/Inn(G). 

We call n(C) the normalized structure constant of C, which is an lower bound for 

the number of orbits of G, in its action via conjugation in the components. 

There are two useful ways to determine n(C): 

We have  

 n(C)=
G Z G

C c C c C c

c c c

G G G Irr G
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and also 

n(C)=
Z G

CGC Irr G

( )

( , , )[ ] ( )/ ( )  
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. 

If we set 

QC=Q({(ci)Irr(G), i=1,2,3}), 

we can formulate the Rigidity Theorem. 

Rigidity Theorem: Let G be a finite group with a rigid class vector, i.e. with 

l(C)=1, whose center possesses a complement in the normalizer of one of the 

subgroups <ci>. Then there exists a geometric Galois extension N/QC(t) with 

Gal(N/QC(t))G. 
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3.The strategy 

Now we will show how we get the solution in the case of unitary group Un(p) with 

odd p and odd n=2m+1. (The proof for even n and for Ln(p) is similar.) 

First we fix the notation: 

Let q be a power of p, G=GUn(q), $G =G<0> the extension of G by the graph 

automorphism 0, 0:AA


0=A-tJ
, J=antidiag(1,...,1). 

The strategy is now clear. First find two elements generating the group $G . Then 

take a third one and show that the normalized structure constant is 1. 

Since there is a classification of the finite primitive irreducible reflection groups 

over an arbitrary field of odd characteristic due to Wagner, the simplest solution is to 

choose as c1 a regular element of the Coxeter-torus, which operates irreducibly and 

primitively on the natural vector space. For c2 we choose a quasi-central 

automorphism, namely 

c2=:=0













E

E

m

m 1

, CG(c2)=<En>Spn-1(q) 

because c2

2
 is a reflection. Now we can show that the c2 together with the Coxeter-

torus does generate the desired group by excluding all other possibilities. In addition 

this implies that n(C) has to be an integer. 

It is a frequent observation, that the largest contribution to n(C) is due to the l-

character. This gives us a hint to take as third element an element so that the product of 

the orders of the centralizers is close to the group order. This leads us to c3=0, 

CG(0)=On(q). 

To evaluate the formula for n(C) we make use of the Deligne-Lusztig-theory, 

which gives us a partition of the set of the irreducible characters in the following way: 

For all classes clG(t) of semisimple elements there exists a set 

(t)={ 1

t

r t

t,..., ( ) }. It holds 

Irr(G)= ( )
( )

t
cl tG

U  

A character (t) extends to $G  if and only if there is s=s

clG(t). 

Since only characters (t) with t in the Coxeter-torus take values unequal 0 on 

c1 and the only t with tt

 are En, we have now only to look at the unipotent 

characters. 

The following trick introduced by G. Malle is quite useful: 
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Since character values are polynomials in q we just look what happens for q. If the 

limes exists, it has to be the exact value for every q, because n(C)is an integer and the 

number of summands in n(C) is independent from q. 

We can express the unipotent characters of G, up to sign, with the help of the 

Deligne-Lusztig-characters Rw and the characters of the Weyl group W=Sn 

=R=
1

0
W

ww Rw
w W

( )


  

where w0=J and Irr(Sn). 

Using the known values of the R 

(c1)=((n)). 

Digne and Michel have recently proved that those unipotent characters, which are 

canonically parametrized by the characters (of the the Weyl group W B Sn n( ) 1

2

2 , 

can be written on the outer coset as  

()G.=R=
1

W
w Rw

w W Bm

 ( )
( )

 . 

The remaining unipotent characters take the value 0 on c2. 

 After some easy computation we get 

R(c2)=R(c3)=R
SOn
 ( )1 . 

And now we see 

((1))>q((c1)(c2)(c3)), 

where q denotes the degree in q, unless =1. 

Thus we can prove 

Theorem: Let G be the group Un(p), where n is odd and 2pP. Then G has a 

GA-realization over Qab
. 

 

 

Ñ. Ð à é ò å ð 

 

ÐÀÖÈÎÍÀËÜÍÛÅ ÃÀÌÇÀ-ÐÅÀËÈÇÀÖÈÈ ËÈÍÅÉÍÎÉ 

 È ÓÍÈÒÀÐÍÎÉ ÃÐÓÏÏ 

 

       Ñîãëàñíî ðåçóëüòàòàì Ìàöàòà ðåøåíèå îáðàòíîé çàäà÷è òåîðèè Ãàëóà 

è äîêàçàòåëüñòâî ãèïîòåçû Øàôàðåâè÷à î òîì, ÷òî ãðóïïà Gal (Q / Q
ab

)  åñòü ñâîáîäíàÿ 

ïðîêîíå÷íàÿ ãðóïïà ñ÷åòíîãî áåñêîíå÷íîãî ðàíãà, ñâîäÿòñÿ ê îòûñêàíèþ ðàöèîíàëüíûõ 

Ãàëóà-ðåàëèçàöèé âñåõ ïðîñòûõ êîíå÷íûõ ãðóïï íàä  Q
ab

. Íàñòîÿùàÿ ðàáîòà ïîñâÿùåíà 

èññëåäîâàíèþ ýòîãî âîïðîñà äëÿ óíèòàðíîé ãðóïïû  Uk(p). Èñïîëüçóÿ êëàññèôèêàöèþ 

Âàãíåðà êîíå÷íûõ ïðèìèòèâíûõ ãðóïï îòðàæåíèé è òåîðèþ õàðàêòåðîâ ãðóïï òèïà Ëè, 

óäàëîñü äîêàçàòü ñëåäóþùóþ òåîðåìó: 



 94 

    Åñëè  G  åñòü óíèòàðíàÿ ãðóïïà Uk (p), ãäå  k - íå÷åòíîå, à  p - íå÷åòíîå ïðîñòîå ÷èñëî, 

òî  G  îáëàäàåò Ãàëóà-ðåàëèçàöèåé íàä Q
ab

.  

Ýòî ïîðîæäàåò ñâÿçü ìåæäó  ñòðóêòóðîé ðàñøèðåíèé Ãàëóà ïîëÿ Q
ab

 è 

êëàññèôèêàöèåé ðèìàíîâûõ ìíîãîîáðàçèé. 


