Библиографический список

1. *Андреев Б.А.* Структуры теории точечных соответствий в геометрии гиперповерхностей // Диф. геом. многообр. фигур. Калининград, 1993. № 24. С. 16 – 23.

B.A. Andreev

CHARACTERISTIC DIRECTIONS AND DARBOUX DIRECTIONS OF NORMALIZED SURFACE

In the point P_0 of smooth normalized surface of projective-affine space the sets of Darboux directiones are studied. The last ones are the generalizations of characteristic directions of the theory of point mappings. In the general case there exist 3 Darboux directions at the point P_0 and coinciding with them 3 characteristic directions. Some theorems are proved in which every possible tipes of characteristic configuratios and corresponding them structures of sets of Darboux directions are investigated.

УДК 514.763.8

Г.А. Банару, М.Б. Банару

(Смоленский государственный педагогический университет, Смоленский гуманитарный университет)

ОБ УПЛОЩАЮЩИХСЯ 6-МЕРНЫХ ЭРМИТОВЫХ ПОДМНОГООБРАЗИЯХ АЛГЕБРЫ ОКТАВ

Доказано, что уплощающиеся 6-мерные эрмитовы подмногообразия алгебры Кэли общего типа линейчаты.

Предметом исследования в настоящей работе являются 6—мерные эрмитовы подмногообразия алгебры Кэли. Напомним [1], что почти эрмитовым называется четномерное многообразие M^{2n} , наделенное римановой метрикой $g = \langle \cdot, \cdot \rangle$ и почти комплексной структурой J, которые согласованы условием

$$\langle JX, JY \rangle = \langle X, Y \rangle, \quad \forall X, Y \in \aleph(M^{2n}).$$

Если почти эрмитова структура многообразия является интегрируемой, то она называется эрмитовой (соответственно, многообразие, оснащенное эрмитовой структурой, – эрмитовым многообразием).

Пусть $O = \mathbb{R}^8$ — алгебра октав. Как известно [2], в ней определены два антиизоморфных 3—векторных произведения

$$P_{1}(X, Y, Z) = -X(\overline{Y}Z) + \left\langle X, Y \right\rangle Z + \left\langle Y, Z \right\rangle X - \left\langle Z, X \right\rangle Y;$$

$$P_2(X,\ Y,Z) = -(X\overline{Y})Z + \left\langle X,Y\right\rangle\!Z + \left\langle Y,Z\right\rangle\!X - \left\langle Z,X\right\rangle\!Y.$$

Здесь $X,Y,Z \in \mathbf{O}$, $\langle \cdot, \cdot \rangle$ – скалярное произведение в \mathbf{O} , $X \to \overline{X}$ – оператор сопряжения в \mathbf{O} . При этом любое другое 3–векторное произведение в алгебре октав изоморфно одному из вышеуказанных.

Если $M^6 \subset \mathbf{O}$ — 6-мерное ориентируемое подмногообразие, то на нем индуцируется почти эрмитова структура $\{J_\alpha,\langle\cdot,\cdot\rangle\}$, определяемая в каждой точке $p\in M^6$ соотношением

$$J_{\alpha}(X) = P_{\alpha}(X, e_1, e_2), \quad \alpha = 1, 2,$$

где $\{e_1,e_2\}$ — произвольный ортонормированный базис нормального к M^6 подпространства в точке $p,\ X\in T_p(M^6)$ [2]. Напомним [3], что точка $p\in M^6$ называется общей, если

$$e_0 \notin T_p(M^6) \subseteq L(e_0)^{\perp}$$
,

где $e_0 \in \mathbf{O}$ — единица алгебры Кэли, $L(e_0)^{\perp}$ — ее ортогональное дополнение. Подмногообразие, состоящее только из общих точек, называется подмногообразием общего типа [3]. Все рассматриваемые далее подмногообразия $\mathbf{M}^6 \subset \mathbf{O}$ подразумеваются подмногообразиями общего типа.

Определение. 6-мерное почти эрмитово подмногообразие алгебры октав называется уплощающимся, если оно является подмногообразием гиперплоскости в **O**.

В [4] получены структурные уравнения 6-мерного эрмитова подмного-образия алгебры октав:

$$d\omega^{a} = \omega_{b}^{a} \wedge \omega^{b} + \frac{1}{\sqrt{2}} \varepsilon^{abh} D_{hc} \omega^{c} \wedge \omega_{b};$$

$$d\omega_a = -\omega_a^b \wedge \omega_b + \frac{1}{\sqrt{2}} \varepsilon_{abh} D^{hc} \omega_c \wedge \omega^b;$$

$$d\omega_b^a = \omega_c^a \wedge \omega_b^c + \left(\frac{1}{2}\delta_{bg}^{ah}D_{hd}D^{gc} - \sum_{\phi}T_{\hat{a}\hat{c}}^{\phi}T_{bd}^{\phi}\right)\!\!\omega_c \wedge \omega^d.$$

Здесь $\varepsilon_{abc} = \varepsilon_{abc}^{123}$, $\varepsilon^{abc} = \varepsilon_{123}^{abc}$ — компоненты тензора Кронекера порядка три [5];

$$D_{hc} = \mp T_{hc}^{8} + iT_{hc}^{7}; \quad D^{hc} = D_{\hat{h}\hat{c}} = \mp T_{\hat{h}\hat{c}}^{8} - iT_{\hat{h}\hat{c}}^{7}, \tag{1}$$

где $\left\{T_{kj}^{\phi}\right\}$ — система функций на пространстве расслоения комплексных реперов. Эти функции служат компонентами тензора эйлеровой кривизны [6], или, по Грею [7], конфигурационного тензора. При этом ϕ = 7, 8; a, b, c, d, g, h = 1, 2, 3; \hat{a} = a + 3; k, j = 1, 2, 3, 4, 5, 6; i = $\sqrt{-1}$.

Поскольку эрмитово M^6 является уплощающимся тогда и только тогда [8], когда

$$T_{ab}^{8}=\pm \mu T_{ab}^{7}; \quad T_{\hat{a}\hat{b}}^{8}=\mp \mu T_{\hat{a}\hat{b}}^{7}, \quad \mu-const,$$

а для келеровых $M^6 \subset \mathbf{O}$ имеют место [4], [9] соотношения

$$T_{ab}^{8} = \pm i T_{ab}^{7}; \quad T_{\hat{a}\hat{b}}^{8} = \mp i T_{\hat{a}\hat{b}}^{7},$$
 (2)

то справедлива

Теорема І. Всякое 6-мерное келерово подмногообразие алгебры октав является уплощающимся.

Из (1) и (2) вытекает, что ранг матрицы (D_{kj}) равен рангу матрицы (T_{kj}^{ϕ}) . Поскольку матрица (D_{kj}) – вырожденная $(\operatorname{rang}(D_{kj}) \le 2)$, то вырожденной является и каждая из матриц (T_{ki}^8) и (T_{ki}^7) . Это означает, что справедлива

Теорема II. Всякое уплощающееся 6-мерное эрмитово подмногообразие алгебры октав является линейчатым.

Замечание. К числу уплощающихся 6—мерных подмногообразий алгебры Кэли относятся так называемые подмногообразия Калаби (или специальные 6—мерные подмногообразия [9]). Такие $M^6 \subset \mathbf{O}$ хорошо изучены [7], [10], [11], [12], поэтому они остаются за рамками данной работы.

Список литературы

- 1. Кириченко В.Ф. Методы обобщенной эрмитовой геометрии в теории почти контактных многообразий // Проблемы геометрии. М.,1986. Т. 18. С. 25–71.
- 2. Gray A. Vector cross products on manifolds // Trans. Amer. Math. Soc. 1969. V. 141. P. 465–504.
- 3. *Кириченко В.Ф.* Почти келеровы структуры, индуцированные 3–векторными произведениями на 6–мерных подмногообразиях алгебры Кэли // Вестник МГУ. 1973. №3. С. 70–75.

- 4. *Банару М.Б.* О почти эрмитовых структурах, индуцированных 3–векторными произведениями на 6–мерных подмногообразиях алгебры октав // Полианалитические функции. Смоленск, 1997. С. 113–117.
- 5. *Лихнерович А*. Теория связностей в целом и группы голономий. М.: ИИЛ, 1960. 216 с
- 6. *Картан Э.* Риманова геометрия в ортогональном репере // М.: Изд-во МГУ, 1960. 298 с.
- 7. *Gray A*. Some examples of almost Hermitian manifolds // Illinois J. Math. 1966. V. 10. №2. P. 353–366.
- 8. Банару М.Б., Банару Γ .А. Об уплощающихся 6—мерных подмногообразиях алгебры Кэли // Избранные вопросы математики и методики ее преподавания. Смоленск, 1998. С. 31–32.
- 9. *Кириченко В.Ф.* Классификация келеровых структур, индуцированных 3–векторными произведениями на 6–мерных подмногообразиях алгебры Кэли // Изв. вузов. Мат. 1980. №8. С. 32–38.
- 10. *Calabi E*. Construction and properties of some six–dimensional almost complex manifolds // Trans. Amer. Math. Soc. 1958. V. 87. P. 407–438.
- 11. *Gray A*. Six–dimensional almost complex manifolds defined by means of three–fold vector cross products // Tôhoku Math. J. 1969. V. 21. P. 614–620.
- 12. *Yano K.*, *Sumitomo T.* Differential geometry of hypersurfaces in a Cayley space // Proc. Roy. Soc. Edinburgh, 1962–1964. P. 216–231.

G.A. Banaru, M.B. Banaru

ON PLANED 6-DIMENSIONAL HERMITEAN SUBMANIFOLDS OF ALGEBRA OF OCTAVES

It is proved, that planed 6-dimensional Hermitean submanifolds of Cayle's algebra of general is linear.

УДК 514.763.8

М.Б. Банару

(Смоленский гуманитарный университет)

О ПАРАКЕЛЕРОВЫХ И С-ПАРАКЕЛЕРОВЫХ МНОГООБРАЗИЯХ

Получены критерии паракелеровости и c-паракелеровости почти эрмитовых многообразий. Приведены примеры 6-мерных паракелеровых и c-паракелеровых многообразий.