Доказательство теоремы 2. Из теоремы 1 вытекает, что если нормальная связность ∇^{\perp} плоская, то $\overline{R}(X,Y)Z=\frac{1}{\rho^2}(\overline{g}(Y,Z)X-\overline{g}(X,Z)Y)$, т.е. \overline{M} локально есть пространство постоянной кривизны $\frac{1}{\rho^2}$. Обратно, если \overline{M} есть пространство постоянной кривизны $\frac{1}{\rho^2}$, то $\langle R^{\perp}(X,Y)\Omega Z,\Omega W\rangle=0$. Пусть X_i , i=1,...,n- базис T_pM . Тогда $\Omega_i=\Omega X_i$, τ -базис T_p^{\perp} . Имеем $\langle R^{\perp}(X_i,X_j)\Omega_k,\Omega_m\rangle=0$. В силу (4) $[A_{\tau},A_{\Omega}]=0$, т.е. $R^{\perp}=0$, нормальная связность $\nabla^{\perp}-$ плоская. В силу симметричности построения получаем утверждение теоремы.

Библиографический список.

1. Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. М.:Наука, 1987. Т.2. 414с.

M. A. Cheshkova

TO GEOMETRY N-SURFACES IN A EUCLIDEAN SPACE E^{2n+1}

In a Euclidean space E^{2n+1} are considered two smooth n–Surfaces M, \overline{M} and diffeomorphism $f:M \to \overline{M}$. Case, when tangents n-planes in is investigated appropriate points $p \in M$, $f(p) \in \overline{M}$ are orthogonal, $\overline{pf(p)}$ normal to M and normal to \overline{M} , and $|\overline{pf(p)}|$ =const. We shall name such transformation f as transformation B.

Theorem. If f there is the transformatiom B, the following two statements are equivalent: 1) surfaces M, \overline{M} have of plane normal connection; 2) M, \overline{M} locally there is the space of constant curvature $\frac{1}{\sigma^2}$.

УДК 514.75

ОБ ОДНОМ КЛАССЕ КОНГРУЭНЦИЙ ЛИНЕЙЧАТЫХ КВАДРИК С ФОКАЛЬНЫМ ТЕТРАЭДРОМ

С. В. Шмелева

(Балтийская государственная академия рыбопромыслового флота)

В трехмерном проективном пространстве P_3 исследован класс T конгруэнций невырожденных линейчатых квадрик Q, четыре фокальные точки A_0 , A_1 , A_2 , A_3 , которых образуют автополярный тетраэдр третьего рода квадрики Q [1, с.

268], в котором A_0 A_i , A_3 A_i (i=1,2) — прямолинейные образующие, причем A_0 — фокальная точка второго порядка [2], а фокальная поверхность (A_3) вырождается в линию. Доказано, что фокальные поверхности (A_0), (A_1), (A_2) являются одной и той же квадрикой, а фокальные поверхности прямолинейной конгруэнции (A_0 A_3) вырождаются в линии, касательные к которым проходят через фокусы F_1 и F_2 луча A_1 A_2 прямолинейной конгруэнции (A_1 A_2), один из которых также описывает линию.

1. Отнесем конгруэнцию **T** к реперу { A_0 , A_1 , A_2 , A_3 }. Тогда уравнение квадрики **Q** приводится к виду: $\mathbf{x}^1\mathbf{x}^2 - \mathbf{x}^0\mathbf{x}^3 = \mathbf{0}$ (1.1)

Теорема 1.1.Конгруэнции **Т** существуют и определяются с произволом двух функций двух аргументов.

Доказательство. Из определения конгруэнции \mathbf{T} следует, что она входит в класс конгруэнций \mathbf{N} [3]. Учитывая в уравнениях (1) работы [3] геометрические характеристики конгруэнции \mathbf{T} , приводим ее замкнутую систему дифференциальных уравнений к виду:

$$\begin{cases}
\omega^{3}_{0} = 0, \, \omega^{0}_{3} = 0, \, \omega^{i}_{i} = 0, \, \omega^{3}_{i} = \omega^{j}, \, \omega^{0}_{i} - \omega^{j}_{3} = \lambda \omega^{j}, \\
\omega^{i}_{3} = \omega^{i} + \omega^{j}, \, \omega^{0}_{0} + \omega^{3}_{3} = 0, \, \omega^{1}_{1} + \omega^{2}_{2} = 0, \, 2\omega^{1}_{1} = \alpha(\omega^{1} + \omega^{2}), \\
2\omega^{0}_{0} = \beta(\omega^{1} + \omega^{2}) + \alpha\omega^{2}, \, d\lambda + 2\lambda\omega^{0}_{0} = 0,
\end{cases} (1.2)$$

$$\begin{cases}
\mathbf{d}\alpha \wedge (\omega^1 + \omega^2) + (\alpha^2 + 2\lambda + 4) \omega^1 \wedge \omega^2 = \mathbf{0}, \\
\mathbf{d}\alpha \wedge \omega^2 + \mathbf{d}\beta \wedge (\omega^1 + \omega^2) + \alpha\beta\omega^1 \wedge \omega^2 = \mathbf{0}.
\end{cases}$$
(1.3)

Здесь и в дальнейшем $\omega^i = \omega^{def}_0$, i, j, k = 1,2; $i \neq j$ и по индексам i, j суммирование не производится. Имеем: $\mathbf{q} = 2$, $\mathbf{s}_1 = 2$, $\mathbf{s}_2 = 0$, $\mathbf{Q} = \mathbf{N} = 2$. Следовательно, система (1.2), (1.3) — в инволюции и определяет конгруэнции \mathbf{T} с произволом двух функций одного аргумента.

Так как конгруэнция квадрик — это двумерное многообразие, то система структурных форм

$$\{\omega^{3}_{0}, \omega^{0}_{3}, \omega^{3}_{i} - \omega^{j}, \omega^{0}_{i} - \omega^{j}_{3}, \omega^{j}_{i}, \omega^{0}_{0} - \omega^{1}_{1} - \omega^{2}_{2} + \omega^{3}_{3}\}$$
 (1.4)

квадрики \mathbf{Q} имеет ранг два. Из (1.2) следует, что это условие для конгруэнции \mathbf{T} равносильно неравенству

$$\lambda \neq \mathbf{0.} \tag{1.5}$$

2. Фокальное многообразие квадрики $\mathbf{Q} \in \mathbf{T}$ определяется системой уравнений [4,c.55,56]:

$$x^{1}x^{2} - x^{0}x^{3} = 0, x^{2}x^{3} = 0, x^{1}x^{3} = 0.$$
 (2.1)

Следовательно, оно состоит из пары прямолинейных образующих A_0A_1 , A_0A_2 квадрики Q и точки A_3 .

Теорема 2.1. Фокальные поверхности (A_0) , (A_1) , (A_2) , конгруэнции T являются одной и той же квадрикой.

Доказательство. Рассмотрим квадрику

$$\Phi_{\lambda} \equiv 2x^{1}x^{2} - 2x^{0}x^{3} + \lambda (x^{3})^{2} = 0$$
 (2.2)

Используя формулы

$$d x^{\alpha} = -x^{\beta} \omega_{\beta}{}^{\alpha}, d\lambda = -2\lambda \omega_{0}{}^{0} (\alpha, \beta = 0, 1, 2, 3),$$
 (2.3)

находим: $\mathbf{d}\Phi_{\lambda} \equiv \mathbf{0}$. Следовательно, квадрика (2.2) — инвариантная. Так как точки A_0, A_1, A_2 принадлежат этой квадрике, то фокальные поверхности $(A_0), (A_1), (A_2)$ совпадают с ней.

Теорема 2.2. Торсы прямолинейных конгруэнций (A_0A_3) и (A_1A_2) соответствуют. Фокусы луча A_1A_2 гармонически делят точки A_1 и A_2 . Одна фокальная поверхность прямолинейной конгруэнции (A_1A_2) вырождается в линию.

Доказательство. Торсы прямолинейных конгруэнций (A_0A_3) и (A_1A_2) определяются одним и тем же уравнением:

$$(\omega^1)^2 - (\omega^2)^2 = 0 (2.5)$$

Обозначим:

$$\overline{\mathbf{F}}_{1} = \overline{\mathbf{A}}_{1} + \overline{\mathbf{A}}_{2}, \quad \overline{\mathbf{F}}_{2} = \overline{\mathbf{A}}_{1} - \overline{\mathbf{A}}_{2},
\overline{\mathbf{N}}_{1} = (2 + \lambda) \overline{\mathbf{A}}_{0} + \overline{\mathbf{A}}_{3}, \quad \overline{\mathbf{N}}_{2} = \lambda \overline{\mathbf{A}}_{0} + \overline{\mathbf{A}}_{3}.$$
(2.6)

$$N_1 = (2 + \lambda) A_0 + A_3, N_2 = \lambda A_0 + A_3.$$
 (2.7)

Из (1.2) следует:

d
$$\overline{F}_1 = (\omega^1 + \omega^2)^{1/2} \alpha \overline{F}_2 + \overline{N}_1,$$
 (2.8)

$$\mathbf{d} \ \overline{\mathbf{F}}_2 = (\boldsymbol{\omega}^2 - \boldsymbol{\omega}^1) \ \overline{\mathbf{N}}_2 + \frac{1}{2} \alpha (\boldsymbol{\omega}^1 + \boldsymbol{\omega}^2) \ \overline{\mathbf{F}}_1. \tag{2.9}$$

Из (2.8) следует, что точки $\mathbf{F_1}$ и $\mathbf{F_2}$ являются фокусами луча $\mathbf{A_1}$ $\mathbf{A_2}$ и что поверхность (\mathbf{F}_1) вырождается в линию.

Теорема 2.3. Фокальные поверхности прямолинейной конгруэнции (A_0A_3) вырождаются в линии, касательные к которым пересекают луч A_1A_2 в его фоку $cax F_1 и F_2$.

Доказательство. Из (1.2) следует, что точка А3, описывающая линию, и точка

$$\overline{\mathbf{M}} = \mathbf{2} \ \overline{\mathbf{A}}_{\mathbf{0}} - \overline{\mathbf{A}}_{\mathbf{3}} \tag{2.10}$$

являются фокусами луча А₀А₃. Так как

$$\mathbf{d} \ \overline{\mathbf{A}}_3 = (\boldsymbol{\omega}^1 + \boldsymbol{\omega}^2) \ (\overline{\mathbf{F}}_{\mathbf{a}} - \mathbf{1}/_2 \boldsymbol{\beta} \ \overline{\mathbf{A}}_3), \tag{2.11}$$

$$\mathbf{d} \ \overline{\mathbf{M}} = \frac{1}{2} \beta(\omega^1 + \omega^2) \ \overline{\mathbf{M}} + (\omega^1 - \omega^2) \ \overline{\mathbf{F}}_2, \tag{2.12}$$

то поверхность (М) является линией, причем касательная к линии (А3) проходит через фокус F_1 , а касательная к линии (M) — через фокус F_2 .

Теорема 2.4. Плоскость, определяемая лучом A_1A_2 и касательной к линии (F_1) , пересекает луч A_0A_3 в точке N_1 , а касательная плоскость к фокальной поверхности (\mathbf{F}_2) пересекает луч $\mathbf{A}_0\mathbf{A}_3$ в точке \mathbf{N}_1 .

Доказательство. Из (2.8) следует, что $N_1 \in [\bar{A}_1, \bar{A}_2, \bar{I}_2, \bar{F}_2 + \bar{N}_1], N_2 \in$ $[\overline{\mathbf{F}}_1, \overline{\mathbf{F}}_2, \overline{\mathbf{N}}_2].$

Имеем:
$$\lambda = \dots$$
 (2.13)
 (A₃ A₀; N₁N₂) - 1,

причем знаменатель дроби отличен от нуля, так как при $(A_3A_0; N_1N_2) = const$ система (1.2), (1.3) несовместна.

Библиографический список

- 1. *Щербаков Р.Н., Малаховский В.С.* Краткий курс аналитической геометрии. Томск, 1964. 382 с.
- 2. *Малаховская С.В.* Конгруэнции линейчатых квадрик с невырождающимися фокальными многообразиями высших порядков // Дифференциальная геометрия многообразий фигур. Калининград, 1982. Вып. 13. С. 60 64.
- 3. Шмелева С.В. Об одном классе конгруэнций квадрик в $\mathbf{P_3}$ с четырехкратной фокальной поверхностью // Дифференциальная геометрия многообразий фигур. Калининград, 1991. Вып. 22. С. 127 132.
- 4. *Малаховский В.С.* Теория конгруэнций кривых и поверхностей второго порядка в трехмерном проективном пространстве. Калининград, 1986. 72 с.

S. V. Shmeleva

ON ONE CLASS OF CONGRUENCES OF RULED QUADRICS WITH A FOCAL TETRAHEDRON

A class T of congruences of nondegenerated ruled quadrics Q whose four focal points A_0 , A_1 , A_2 , A_3 form self-polar tetrahedron of a third genus of a quadric Q in which A_0A_i , A_3A_i (i=1,2) are rectilinear generatrixes, where A_0 is a point of the second order and a focal surface (A_3) degenerated into a line is investigated in a three-dimensional projective space P_3 . It is proved, that focal surfaces (A_0), (A_1), (A_2) are one and the same quadric and focal surfaces of a rectilinear congruence (A_0A_3) are degenerated into lines, whose tangents passes through focuses F_1 and F_2 of a ray A_1A_2 of a rectilinear congruence (A_1A_2) one of which describes a line as well.

УДК 514.75

О НЕКОТОРЫХ СВОЙСТВАХ КОНГРУЭНЦИЙ ОСНАЩЕННЫХ КОНИК В ${\sf A}_3$

Е.А. Щербак

(Калининградский государственный университет)

Продолжаются исследования [1] конгруэнций K оснащенных коник $F = \{F_1, F_2\}$, где F_1 — центральная коника, а F_2 — точка, неинцидентная плоскости коники F_1 . Получены новые геометрические свойства конгруэнций K, в том числе необходимое и достаточное условие того, что точка A — фокус луча $[A, \overline{e}_{\alpha}]$ конгруэнции $(A, \overline{e}_{\alpha})$ ($\alpha = 1, 2, 3$).