УДК 514.76

В.С. Малаховский

(Российский государственный университет им. И. Канта, г. Калининград)

КОНГРУЭНЦИИ И КОМПЛЕКСЫ КОНИК, ПОРОЖДАЕМЫЕ ПРОЕКТИВНОЙ СФЕРОЙ

В трехмерном проективном пространстве P_3 рассмотрены гладкие нелинейчатые поверхности S_0 , все первые директрисы Вильчинского которых проходят через одну точку (проективные сферы) и поверхности S_1 , все такие директрисы которых пересекают одну прямую (проективные поверхности вращения). Исследованы конгруэнции и комплексы невырожденных коник, порождаемые проективной сферой S_0 .

§1. Проективные сферы

Рассмотрим в проективном пространстве P_3 гладкую нелинейчатую поверхность S, отнесенную к каноническому реперу С.П. Финикова $\{A_0, A_1, A_2, A_3, \}$ [1, c. 4—7].

Матрица его деривационных формул

$$dA_{\alpha} = \omega_{\alpha}^{\beta} A_{\beta} (\alpha, \beta, \gamma = 0, 1, 2, 3)$$
(1.1)

имеет вид

$$\begin{bmatrix} \frac{1}{2}p_{k}\omega^{k} & \omega^{l} & \omega^{2} & 0\\ a_{k}\omega^{k} & \frac{1}{6}(p_{2}\omega^{2} - p_{l}\omega^{l}) & \omega^{l} & \omega^{2}\\ b_{k}\omega^{k} & \omega^{2} & \frac{1}{6}(p_{l}\omega^{l} - p_{2}\omega^{2}) & \omega^{l}\\ b_{2}\omega^{l} + a_{l}\omega^{2} & b_{k}\omega^{k} & a_{k}\omega^{k} & -\frac{1}{2}p_{k}\omega^{k} \end{bmatrix}$$
(1.2)

где

$$\omega^{i} \stackrel{\text{def}}{=} \omega_{0}^{i}$$
.

Здесь и в дальнейшем $i,j,k = 1,2; i \neq j$ и по индексам i и j суммирование не производится.

Определение 1.1. Проективной сферой называется гладкая нелинейчатая поверхность S_0 , все первые директрисы Вильчинского которой проходят через одну точку M, называемую центром проективной сферы.

Исключая из рассмотрения поверхности S_0 , с центром A_3 , положим

$$M=A_3 - aA_0 (a \neq 0).$$
 (1.3)

Теорема 1.1. Проективные сферы существуют и определяются с произволом двух функций одного аргумента.

Доказательство. Из условия $dM = \lambda M$ находим

$$a = a_2 = b_1; a_1 = 0, b_2 = 0.$$
 (1.4)

Замкнутая система пфаффовых и квадратичных уравнений поверхностей S_0 приводится к виду

$$p_k\omega^k - 2\omega_0^0 = 0, \ p_1\omega^1 - p_2\omega^2 - 6\omega_2^2 = 0, \ \omega_o^o + \omega_3^3 = 0, \ \omega_1^1 + \omega_2^2 = 0, \ (1.5)$$

$$\omega_{i}^{j}=\omega^{i}\,,\;\;\omega_{i}^{3}=\omega^{j},\;\omega_{o}^{3}=0,\;\;\omega_{3}^{0}=0,\;\;\omega_{i}^{0}=a\omega^{j},\;\;\omega_{3}^{i}=\omega_{j}^{0}\,,\;\;da+2a\omega_{0}^{0}=0$$

$$dp_k \wedge \omega^k = 0, \ dp_1 \wedge \omega^1 - dp_2 \wedge \omega^2 + (6(1-2a) - 2/3p_1p_2)\omega^1 \wedge \omega^2 = 0.$$

Эта система — в инволюции и определяет проективные сферы с произволом двух функций одного аргумента.

Число а ≠ 0 назовем радиусом проективной сферы. Обозначим

$$M^* = A_3 + aA_0$$
 (1.6)

Определение 1.2. Главной проективной сферой называется проективная сфера S_0 радиуса 1/2.

Теорема 1.2. Проективная сфера S_0 тогда и только тогда является главной, когда ее радиус постоянен.

Доказательство. Пусть a = const. Из уравнений (1.5) следует

$$p_1 = 0, p_2 = 0, a = 1/2.$$
 (1.7)

Учитывая равенства (1.7) в уравнениях (1.5), убеждаемся в том, что главные проективные сферы определяются вполне интегрируемой системой уравнений Пфаффа.

Теорема 1.3. Гладкая нелинейчатая поверхность S тогда и только тогда является проективной сферой, когда любая линейчатая поверхность конгруэнции ее первых директрис Вильчинского (A_0A_3) является торсом.

Доказательство. Фокусы $\Phi = \lambda_1 A_0 + \lambda_2 A_3$ луча $A_0 A_3$ и торсы прямолинейной конгруэнции $(A_0 A_3)$ определяются соответственно уравнениями

$$\lambda_1^2 + (b_1 + a_2) \lambda_1 \lambda_2 + (a_2 - a_1 b_2) \lambda_2^2 = 0,$$
 (1.8)

$$a_1((\omega^1)^2 + (a_2 - b_1)\omega^1\omega^2 - b_2(\omega^2)^2 = 0.$$
 (1.9)

В силу условий (1.4) уравнение (1.9) является тождеством. Наоборот, если уравнение (1.9) тождественно обращается в нуль, то выполняются условия (1.4), характеризующие проективные сферы.

Теорема 1.4. Гладкая нелинейчатая поверхность S, не являющаяся проективной сферой, тогда и только тогда является поверхностью пары Годо [1, с. 13], когда торсы прямолинейной конгруэнции ее первых директрис Вильчинского высекают на S сеть асимптотических линий.

Доказательство. Пусть S — поверхность пары Годо, т. е.

$$a_1 = 0, b_2 = 0.$$
 (1.10)

Уравнение торсов (1.9) приводится к виду:

$$(a_2 - b_1)\omega^1 \omega^2 = 0. (1.11)$$

Если S не является проективной сферой, то $a_2 - b_1 \neq 0$ и уравнение (1.11) определяет на S сеть асимптотических линий.

Наоборот, если уравнение (1.9) определяет на S сеть асимптотических линий, то $a_1 = 0$, $b_2 = 0$, $a_2 - b_1 \neq 0$, т. е. поверхность S есть поверхность пары Годо, не являющейся проективной сферой. Из уравнений (1.5) непосредственно следует:

Теорема 1.5. Проективная сфера является поверхностью пары Годо. Вторая поверхность $\widetilde{S}_0 \equiv (A_3)$ также является проективной сферой с радиусом 1/a. Плоскость $(A_1A_2M^*)$, порожденная проективными сферами S_0 и \widetilde{S}_0 , стационарна.

Замечание. Так как проективная сфера S_0 является поверхностью пары Годо, то она обладает следующими свойст-

вами: 1) прямые Демулена [1, с.11] проективной сферы S_0 совпадают; 2) прямые A_3A_i являются асимптотическими касательными поверхности \widetilde{S}_0 , причем асимптотические линии на поверхностях S_0 и \widetilde{S}_0 соответствуют; 3) квадрика Ли поверхности S_0 в точке A_0 является также квадрикой Ли поверхности \widetilde{S}_0 в точке A_3 ; 4) репер $\{A_\alpha\}$ является репером С.П. Финикова как для проективной сферы S_0 , так и для проективной сферы \widetilde{S}_0 .

§2. Проективные поверхности вращения

Характеристическим признаком поверхности вращения в евклидовом пространстве является то, что все ее нормали пересекают одну прямую — ось вращения.

Это позволяет для проективного пространства P_3 ввести следующее определение.

Определение 2.1. Гладкая нелинейчатая поверхность S_1 называется проективной поверхностью вращения, если все ее первые директрисы Вильчинского пересекают одну прямую, называемую осью вращения.

Теорема 2.1. Проективные поверхности вращения существуют и определяются с произволом четырех функций одного аргумента.

Доказательство. Пусть прямая $1 \equiv MN$, где

$$M = A_3 - tA_0, N = A_2 + n_0A_0 + n_1A_1$$
 (2.1)

— ось вращения.

Из условия

$$d[MN] = \lambda[MN] \tag{2.2}$$

следует, что

$$\begin{split} &\omega_{3}^{1}=n_{1}\omega_{3}^{2}+t(\omega^{1}-n_{1}\omega^{2}),\\ &dt=\omega_{3}^{0}-n_{0}\omega_{3}^{2}+2t\omega_{3}^{3}+tn_{0}\omega^{2},\\ &dn_{0}=n_{0}(\omega_{2}^{2}-\omega_{0}^{0})+(n_{0}n_{1}-t)\omega^{1}+(n_{0}^{2}-tn_{1})\omega^{2}-\omega_{2}^{0}-n_{1}\omega_{1}^{0},\\ &dn_{1}=(n_{1}^{2}-n_{0})\omega^{1}+(n_{0}n_{1}-1)\omega^{2}+2n_{1}\omega_{2}^{2}. \end{split} \tag{2.3}$$

В силу теоремы Пуанкаре о тождественном обращении в нуль внешнего дифференциала от дифференциала внешней формы (в частности, формы Пфаффа) система (2.3) вполне интегрируема.

Из последнего уравнения этой системы следует, что

$$n_1 \neq 0. \tag{2.4}$$

Замкнутая система дифференциальных уравнений поверхности S_1 состоит из уравнений (2.3), пфаффовых уравнений

$$\begin{split} &2\omega_{0}^{0}=p_{k}\omega^{k},p_{1}\omega^{l}-p_{2}\omega^{2}-6\omega_{2}^{2}=0,\quad \omega_{0}^{3}=0,\ \omega_{1}^{2}=\omega^{l},\ \omega_{2}^{l}=\omega^{2},\\ &\omega_{0}^{0}+\omega_{3}^{3}=0,\ \omega_{1}^{l}+\omega_{2}^{2}=0,\\ &\omega_{0}^{0}=a_{k}\omega^{k},\ \omega_{2}^{0}=\omega_{3}^{1},\ \omega_{1}^{0}=\omega_{3}^{2},\ \omega_{i}^{3}=\omega^{j},\ \omega_{3}^{0}=n_{1}(a_{2}-t)\omega^{l}+a_{1}\omega^{2} \end{split} \tag{2.5}$$

и внешних квадратичных уравнений

$$\begin{split} dp_k \wedge \omega^k + 2(a_1n_1 + t - a_2)\omega^l \wedge \omega^2 &= 0, \\ dp_1 \wedge \omega^l - dp_2 \wedge \omega^2 - 6(n_1a_1 + t + a_2 - 1 + \frac{1}{9}p_1p_2)\omega^l \wedge \omega^2 &= 0, \\ da_1 \wedge \omega^l + da_2 \wedge \omega^2 + (a_2p_1 - \frac{2}{3}a_1p_2)\omega^l \wedge \omega^2 &= 0, \\ n_1da_2 \wedge \omega^l + da_1 \wedge \omega^2 - (2a_2n_1n_0 - a_2 + p_2a_2n_1 - 2tn_1n_0 + t - - tn_1p_1 - n_1a_1 - \frac{4}{2}a_1p_1)\omega^l \wedge \omega^2 &= 0. \end{split} \tag{2.6}$$

Анализируя эту систему, убеждаемся в справедливости теоремы.

Теорема 2.2. Если поверхность S_1 образует пару Γ одо, то она является проективной сферой S_1

Доказательство. Пара Годо характеризуется уравнением

$$\omega_3^0 = 0$$
. (2.7)

Из последнего уравнения системы (2.5) и неравенства (2.4) следует, что

$$a_1 = 0, a_2 = t.$$
 (2.8)

Учитывая в уравнениях (2.3) эти равенства, находим

$$\omega_3^1 = a_2 \omega^1. \tag{2.9}$$

Значит,

$$b_2 = 0, b_1 = a_2.$$
 (2.10)

Условия (2.8) и (2.10) характеризуют проективные сферы.

Определение 2.2. Поверхностью S_1^0 называется проективная поверхность вращения, ось которой пересекает вторую директрису Вильчинского и не содержит точку A_3 ее первой директрисы.

Теорема 2.3. Поверхности S_1^0 существуют и определяются с произволом двух функций одного аргумента.

Доказательство. Полагая, что в формулах (2.1) и (2.3) $n_0 = 0$, приводим замкнутую систему дифференциальных уравнений поверхности S_1^0 к виду

$$\begin{split} &2\omega_0^0 = p_k\omega^k\,, 6\omega_1^1 + p_1\omega^1 - p_2\omega^2 = 0, \omega_0^3 = 0, \ \omega_0^0 + \omega_3^3 = 0, \ \omega_1^1 + \omega_2^2 = 0, \\ &\omega_3^i = \omega_j^0\,, \ \omega_i^3 = \omega^j\,, \ \omega_1^0 = -\frac{t}{n_1}\omega^1\,, \ \omega_2^0 = -tn_1\omega_0^2\,, \ \omega_3^0 = -tn_1\omega_0^1 - \frac{t}{n_1}\omega^2\,, \ (2.11) \\ &dt = \omega_3^0 + 2t\omega_3^3\,\,, \ dn_1 = 2n_1\omega_2^2 + n_1^2\omega^1 - \omega^2 \quad (tn_1 \neq 0), \end{split}$$

 $dp_{_{k}}\wedge\omega^{_{k}}=0,\ dp_{_{1}}\wedge\omega^{_{1}}-dp_{_{2}}\wedge\omega^{_{2}}-2(4/3p_{_{1}}p_{_{2}}-6)\omega^{_{1}}\wedge\omega^{_{2}}=0\,.\ (2.12)$

Анализируя эту систему, убеждаемся в справедливости теоремы. Точки $M = A_3 - tA_0$ и $N = A_2 + n_1A_1$ являются фокусами лучей A_0A_3 и A_1A_2 прямолинейных конгруэнций (A_0A_3) и (A_1A_2) . Они описывают вырождающуюся в прямую MN общую фокальную поверхность. Два других фокуса этих прямолинейных конгруэнций определяются формулами

$$M^* = A_3 + tA_0, N^* = A_2 - n_1A_1.$$
 (2.13)

Точки прямолинейных конгруэнций задаются одним уравнением:

$$(\omega^1)^2 - n_1^2 (\omega^2)^2 = 0.$$
 (2.14)

Приходим к следующему результату:

Теорема 2.4. Поверхности S_1^0 обладают следующим свойствами:

- 1) конгруэнция (A_0 A_3) сопряжена поверхности S_1^0 , а конгруэнция (A_1 A_2) гармонична ей [2, с. 251];
- 2) торсы прямолинейных конгруэнций $(A_0 \ A_3)$ и $(A_1 \ A_2)$ соответствуют;
- 3) фокусы лучей A_0A_3 и A_1A_2 гармонически делят соответственно точки A_0A_3 и A_1,A_2 .

§3. Конгруэнции коник, порожденные проективной сферой

Проективная сфера S_0 определяет конгруэнцию C_a коник $C_{a:}$

$$F = x^{1}x^{2} - x^{0}x^{3} = 0, x^{0} - ax^{3} = 0,$$
(3.1)

образованную пересечением ее квадрик Ли со стационарной плоскостью

$$\alpha = (A_1 A_2 M^*). \tag{3.2}$$

Все коники C_a этой конгруэнции принадлежат плоскости α .

Характеристические точки коники $C_a \in (C_a)$ вдоль направления

$$\omega^{i} = \lambda_{i}\theta \qquad (|\lambda_{1}| + |\lambda_{2}| \neq 0, \theta \neq 0) \tag{3.3}$$

определяются системой уравнений

$$x^{1}x^{2} - a(x^{3})^{2} = 0$$
, $x^{0} - ax^{3} = 0$, $\lambda_{1}(x^{1})^{2} + \lambda_{2}(x^{2})^{2} = 0$. (3.4)

Следовательно, вдоль асимптотических линий $\omega^1=0$ и $\omega^2=0$ точки A_1 и A_2 являются двукратными характеристическими точками коники C_a . Другие две характеристические точки этой коники вдоль направления (3.3) определяются системой уравнений

$$\lambda_1(\xi^1)^2 + \lambda_2(\xi^2)^2 = 0, \quad \xi_1 \xi_2 = a,$$
 (3.5)

где
$$\xi^{i} = \frac{x^{i}}{x^{3}}, x^{3} \neq 0.$$

Рассмотрим на проективной сфере S_0 семейство линий Γ_a :

$$a^2\omega^2 + \omega^1 = 0.$$
 (3.6)

Характеристика квадрики Ли Q проективной сферы S_0 в точке A_0 вдоль линии Γ_a распадается на пару невырожденных коник — (Δ_{ϵ})-коник:

$$x^{1}x^{2}-x^{0}x^{3}=0, x^{2}-\epsilon ax^{1}=0, (\epsilon=\pm 1).$$
 (3.7)

Из системы уравнений (3.7) следует, что плоскости коник Δ_{-1} и Δ_{1} пересекаются по первой директрисе Вильчинского $A_{0}A_{3}$.

Фокальные точки и фокальные семейства конгруэнций Δ_{ϵ} -коник определяются системой уравнений (3.7) и уравнений

$$\begin{cases} (x^{1})^{2}\omega^{1} + (x^{2})^{2}\omega^{2} = 0, \\ (\epsilon ax^{0} + (\frac{2}{3}\epsilon ap_{1} - 1)x^{1} + \epsilon a^{2}x^{3})\omega^{1} + ((\frac{4}{3}\epsilon ap_{2} + a^{2})x^{1} - x^{0} - ax^{3})\omega^{2} = 0. \end{cases}$$
(3.8)

Исключая из уравнений (3.8) ω^1 и ω^2 , получим

$$(x^{1})^{2}((\frac{4}{3}\epsilon ap_{2} + a^{2})x^{1} - x^{0} - ax^{3}) - -(x^{2})^{2}(\epsilon ax^{0} + (\frac{2}{3}\epsilon ap_{1} - 1)x^{1} + \epsilon a^{2}x^{3}) = 0$$
(3.9)

Анализируя системы уравнений (3.7) и (3.9), приходим к следующему результату:

Теорема 3.1. Проективные сферы S и \widetilde{S} являются сдвоенными фокальными поверхностями конгруэнций (Δ_{-1}) и (Δ_1) .

Другие две фокальные поверхности этих конгруэнций определяются системой уравнений

$$\eta^2 = \epsilon a \eta^1, \, \eta^3 = \epsilon a (\eta^1)^2, \, A (\eta^1)^2 + B \eta^1 + C = 0,$$
 (3.10)

где

A=
$$a^2(\varepsilon + a^2)$$
, B= $\varepsilon a(\frac{1}{3}\varepsilon a^2 p_1 - \frac{4}{3}p_2) - 2a^2$, C= $\varepsilon a^3 + 1$. (3.11)

Так как проективная сфера имеет постоянный радиус только при a = 1/2 (теорема 1.2), то точки A_0 и A_3 не могут иметь фокальную кратность выше второй.

§4. Комплексы пар коник, порожденные проективной сферой

Рассмотрим на проективной сфере S_0 пучок однопараметрических семейств линий

$$u^2\omega^2 + \omega^1 = 0, (4.1)$$

где и — произвольный параметр.

Характеристика квадрик Ли проективной сферы S_0 вдоль каждой линии пучка (4.1) распадается на пару невырожденных коник

$$x^{1}x^{2} - x^{0}x^{3} = 0$$
, $x^{2} - \varepsilon ux^{1} = 0$, $(\varepsilon = \pm 1)$. (4.2)

Следовательно, проективная сфера S_0 порождает комплекс K пар невырожденных коник, расслаивающийся на двухпараметрическое семейство одномерных многообразий пар коник, инцидентных одной квадрике. Комплекс K включает в себя комплексы K_{-1} и K_1 , образованные кониками K_2 при E=1 и E=1 соответственно.

Конгруэнции (Δ_{-1}) и (Δ_{1}), рассмотренные в §3, выделяются из комплексов K_{-1} и K_{1} , условием —

$$u = a. (4.3)$$

Так как изменение параметра и при фиксированных двух других независимых параметрах комплекса K_ϵ (т. е. при фиксированной точке $A_0 \in S_0$) сохраняет значение инварианта а, то все образы, ассоциированные с конгруэнцией (Δ_ϵ), остаются инвариантными и в комплексе K_ϵ . Например, стационарная плоскость $\alpha = (A_1 A_2 M^*)$, определяемая уравнением x^0 – $ax^3 = 0$, — центр M проективной сферы и точка $M^* = A^3 + aA^0$.

Список литературы

- 1. *Малаховский В.С.* Теория конгруэнций кривых и поверхностей второго порядка в трехмерном проективном пространстве: Учеб. пособие / Калинингр. ун-т. Калининград, 1986.
 - 2. *Фиников С.П.* Теория конгруэнций / ГИТТЛ. М.; Л., 1950.

V. Malakhovsky

CONGRUENCES AND COMPLEXES OF CONICS GENERATED BY PROJECTIVE SPHERE

In 3-dimensional projective space P_3 a non-ruled surface S_o whose all first directrixes of Wilczynski contain a fixed point (projective sphere) and a surface S_1 whose all these directrixes intersect a fixed straight line (projective surface of rotation) are considered. Congruences and complexes of non-degenerating conics generated by surface S_0 are analyzed.

УДК 514.75

В.С. Малаховский

(Российский государственный университет им. И. Канта, г. Калининград)

ПОДМНОЖЕСТВА ПРОСТЫХ ЧИСЕЛ В ОБОБЩЕННЫХ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЯХ ВЫСШИХ СТЕПЕНЕЙ

Рассматриваются числовые подмножества $\left(a_{n}^{(k)}\right)$, определяемые рекуррентной формулой

$$a_{n+1}^{(k)} = a_n^{(k)} + d \cdot n^k, \tag{0.1}$$

где $a_1^{(k)}=p$ — нечетное простое число; d — четное положительное число $(p<10^4,\,d\leq 200)$. Показано, что при четном $k\leq 20$ число d кратно 6. Дана компьютерная программа, составленная Н.В. Малаховским, определяющая для $k\leq 20$, $p<10^4$, $d\leq 200$ все подмножества $\left\{a_1^{(k)},a_2^{(k)},...,a_m^{(k)}\right\}$ простых чисел для $m\geq 1$.