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ON THE PROBLEM OF EVALUATING THE ACCURACY
OF DIAGNOSTICS OF WAVE DISTURBANCES CARRIED OUT USING
THE TECHNIQUE OF PROJECTION OPERATORS

In this note we study the problem of a function reconstruction in a con-
text of a Laplace method application. We use a unitary space of splines with a
double dimension of one, that approximate the set of points, representing the
results of observation. The conventional scalar product allows to project the
approximation onto the subspace of observations. The use of the same scalar
product yields the norm that we use to estimate error deviations within the
model under consideration. Its minimum defines both a function reconstruc-
tion and its error, which also include the measurements errors. The results we
apply to the problems of reconstruction of initial or boundary conditions for
1D wave equation, that imply the procedure of directed waves division.

Wsyuaemcs npobaema Boccmarobrenus pynxyuu 6 KoHmexcme npume-
Henus memooa Jlanaaca. Mot ucnoavsyem yHumapHoe npocmpancmbo cnaaii-
HO8 ¢ yoBoenuem koauuecmba, komopoe annpoxcuMupyem MHoxecmso mo-
ek, npedcmaBasiowux pesysvmamsi HabawoeHus. ObbiuHOe CKaAAPHOE Npo-
usbBedenue nosboasem npoeyupobams npubiuxeHue Ha NOONPocHpaHcmbo
Habao0enutl. Vcnoavsobanue moeo e ckaispHozo npousbederus oaem Hop-
MY, KOMOPYIO Mbl UCTIOAb3YEeM 045 OUEHKY OMKAOHEHUT 0uiubox 6 paccmam-
pubaemoii modeau. Eeo munumym onpedessem kax Boccmanobaenue gyrk-
yuu, max u ee owubky, xomopas maxxe Gxatouaem ouinbku usmepenut. Ilo-
AYHeHHble Pe3yAbIaAmb. NPUMeHUMbL K 3a0auam 6occmanobAeHus HAYAAbHBIX
UAU 2PAHUMHBIX Yca0Bull 045 00HOMepHO20 BoaH0B020 Ypabrenus, npednoaa-
eanuux npoyedypy pasoelenus Hanpabiennblx 6oaH.
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TUPOBaHN:, MaTeMaT4eCcKoe MoJleJIMpoBaHMe.

Introduction

The problem we touch relates to sampling theory and interpolation, with
some focus on the Shannon — Niquist — Kotelnikov theorem [1; 2]. We do
restrict ourselves by practical aims, having in mind estimations of interme-
diate ordinates between observed values of a function that represent wave
phenomena [3; 4]. The second paper [4] use the Fourier basis and state, that
for unambiguous restoration of a continuous signal from its samples need to
double the sampling rate maximum frequency in the signal spectrum. The
procedure we propose consumes the Laplace — Legendre ideas about min-
imization of a functional space distance between the continuous function
representation by 2n-dim-splines and n-dim splines that mimic observa-
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tions. The procedure implies a definition of projection the 2n-dim space onto
the n-dim space that fix intermediate ordinates of the wave function under
consideration. The minimization gives simple system of equations, that con-
tain 2nxn matrix A, hence the problem is classical ill-posed one. Its simplest
regularization is given by A4, that determines quasi-solution of the prob-
lem [5]. Its minimum also defines both a function reconstruction and its er-
ror, which also includes the measurements errors. The results we apply to
the problems of reconstruction of initial or boundary conditions for 1D wave
equation, that imply the procedure of directed waves division within the
dynamic projecting method [6].

Dynamic projection operator method

The main idea of the method of projection operators is to divide the solu-
tion space into subspaces of solutions corresponding to various branches of
the dispersion relation [7]. To do this, it is necessary to present the original
problem in matrix form

v, =Ly
. . Vv
with the evolution operator L and a state i of a system ¥ = ( J .
p

The Fourier transformation V(x)=L .[ V(k)e™ dk may be written as

2w
the matrix substitution ¥ =Fy and describes transition to k-representation

of the evolution operator L :
y, =F"'LFy=Ly.

The matrix eigenvalue problem L ¢=21¢ introduces subspaces, which

we would represent by the matrix of solutions W, so that L ¥ =WA, where
A=diag {4,,4,} — diagonal matrix. If 4, # 4, (eigenvalues) the inverse ma-

trix existsand L = YAY ™" .
Spectral decomposition of the matrix L

L;= '//z‘kAkll//Ij& = '//ikﬂ’k'//kjil = Zﬂky/ikl//k[l = zﬂk (B )ij :
T *

The projection operator can be also found using the relations and prop-

erties of the projection operators P; w =, , w; — eigenvectors of the evo-

lution matrix L . Properties of the projection operator:

- -2 . -
P:*P; =0, P:i =P;, Z.Pi=l.
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The spectral decomposition of the matrix [6] allows to find the projection
operator through the direct product

Pi=y,® g,

v, — i-th column; l//[1 — i-th row of inverse Fourier transform of W.

Diagnostics of wave disturbances

One-dimensional adiabatic acoustic wave propagation for the ideal gas
can be represented as solution of the system

Vt_cpx :O’
pf_CV‘c :0‘

The initial conditions
p(x,0)=9,(x), V(x,0)=0,(x),

define the Cauchy problem.
The evolutionary equation has the form y, =Ly, where

v 01 0
Y=| |, L=cD ,D=—.
p 10 Ox
Projection operators of one-dimensional adiabatic acoustic wave propa-

. . 1(1 =1
gation for the ideal gas looks as P, = — .
2(£1 1

The general solution is determined by the relation (P, + P )y =1.
Acting as a design operator, we select a unidirectional wave

() oo

+

For a one-dimensional adiabatic acoustic problem, this allows us to de-
termine the coupling equations and evolution equations for unidirectional

waves

(p+o); y.= %(P—U)?

N | =

l//+ =
(p,) +cly.) =0,
(W), —c(y)=0.

Evaluation the accuracy of diagnostics of wave disturbances

Let we have some set of datapoints y; = y(x =x;) defined in the points
x=x, €[0,1],i =0.n . They can, for example, be result of application of some

projection operators to data in some diagnostic problem, but in fact their
origin does not really matter. Its spline representation is constructed as
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N 1 i+1
l,xe|—,—

¢= 2771 si(x)eS", where si(x)= n n
0, other wise

The scalar productin S is defined as

1

(¢.4,)=[#(x)¢ (x)dx

0

Next, we search the solution of the problem in the space S*" via splines

2n
46 y=>¢s (x)es™,
i=1
where its projection to the S” is defined by the relation

fi + §i+1
4

ST

hence

Z§+§z+l Esn’

whence its components are calculated via the scalar product

(Sl/l//+j=l//l+'

Let’s first apply proposed method to the simplest possible case where
we have two points with values A and B separated by the distance & on
the OX axis (i.e. their x — coordinates are x, and x, +/).

We will use piecewise-constant approximation for our function. To do it
we can introduce new point situated at the midpoint between our initial
points with value

A+B
5

In a case we have some background information about our function
method, it can be modified by using another value for C but here we do not
have it and half-point should work good enough.

Now we will try to construct another approximation of our function.
Simplest is two-point piecewise-constant, where function has one value, let’s
call it X, for the first half of our interval and the second value, Y, on the
second half.

Now we will try to find X and Y in such a way as to minimize a norm

C:

I x0+ll X(J*% Xo+
E:jS(A X) dx+j2c X) dx+ jsc Y) dx+ th Y) dx.
%o X +* Xo +7 Xy +%

3 2 3
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Since they are independent we can separately solve this for X and Y
We'll get

5A+B _ A+5B

X= , Y=
6 6

7

then minimal possible value of norm is

(A—B)Qh.

Nmin =
18

Now if we have a set of datapoints we can apply this formula at each in-

terval (x,,x,,,) independently. That means that, assuming all intervals have 47

the same length &, that global error over all datapoints take the form

=S () = S () = e S wa ) ()
- 18 y y1+1 - 8 par yi+1 - 18N P yi yi+1 4

i=0

where L =x, —x, — distance between first and last points of our set.

If we assume that the modulus of the derivative is always less than some
constant Z then when # is small

T NZ L Nz e Lt 7
TN & Vi Y] SN 4 N 18N 77

so at least this method pass sanity check — error goes down with increase of
number of data points.

Let's look how does it work on simplest example — string equation.
Equation of string have the form

O’U(x,t) ,0U(x,t)
2 =c .
ot ox

We can rewrite this equation as a system of two first order ordinary dif-

ou(x,t)

ferential equations over U(x,t) and V(x,t)= . In this case it is triv-

ial to obtain projection operators (for procedure look for example [6])

1(1 =#1
P == .
o210+ 1

The general solution in this case take form of sum of left-and right-

running waves:
u F, E
F= = + ,
1% F, -F

where F, and F are arbitrary functions. These projection operators does in-

deed separate our functions into two waves with different directions. While
we act in the space of symbolical functions this result is exact.
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Now let us choose for example F, =F, and fix the point of «measure-
ment» x =X, . Then we can generate a series of N datapoints taking values of

one of our waves in the points t=i-h, where i=1..N is the number of

L
point, h = N is the step between points and L is the length of the time inter-

)

Then we can try to restore continuous function by pulling splines over
datapoints and then we can calculate of error of this restoration according to
formula (1).

val we are interested in.

B (ki
F, [n] 2[1:0 (Kh

If we choose F, = exp(—(x—c t-5)’ ) and x, =5 then depending on the

number of points we take our error is presented on the graphics (Fig. 1) (ho-
rizontal axis is the common logarithm of number of points):

0.10-
0.08-
£ 0.06-

004

1 2 3 4 5
J'g[ _\l._:l

Fig. 1. Error as function of number of points for Gaussian

If our function is not as smooth as Gaussian then error, predictably, is a
log Dbigger. For example if we choose fast oscillating function

E = exp(—(x—c -t—5)2)~cos(30t) we ‘1l get (Fig. 2).
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Fig. 2. Error as function of number of points for fast oscillating function

Of course, because of Shannon — Niquist — Kotelnikov theorem we
can’t really use the part of this graphics which is to the left of Ig(N)=2. As

can be seen the error does indeed goes to zero when the number of points
grow. If we can choose N, for example when we are deciding on the parame-
ters of the numerical model, this method, following the general idea of the
Runge’s rule, can be one of deciding factor in choosing model’s number of
points. If it is applied to the experimental data, where number of points is
generally fixed, it can be used to determine an error of reconstruction of con-
tinuous function.
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