† S. B. Leble, A. V. Yurov

INITIAL PROBLEM FOR HEAT EQUATION WITH MULTISOLITON INHOMOGENEITY AND ONE-LOOP QUANTUM CORRECTIONS¹

Поступила в редакцию 03.09.2021 г. Рецензия от 23.09.2021 г.

The generalized zeta-function is built by a dressing method based on the Darboux covariance of the heat equation and used to evaluate the correspondent functional integral in quasiclassical approximation. Quantum corrections to a kink-like solutions of Landau — Ginzburg model are calculated.

Используя одевающий метод, основанный на ковариантности относительно преобразований Дарбу уравнения теплопроводности, мы вычисляем дзета-функцию для дальнейшей оценки функционального интеграла в квазиклассическом приближении. Вычислена квантовая поправка к решению типа «кинк» модели Ландау — Гинзбурга.

Keywords: Darboux transformation, heat conduction equation, kink, functional integral

Ключевые слова: преобразование Дарбу, уравнение теплопроводности, кинк, функциональный интеграл

1. Introduction

In the papers [1-4] quantum corrections to a few classical solutions by means of Riemann zeta-function are calculated. Most interesting of them are the corrections to the kink — the separatrix solution of field ϕ^4 model. The method of [1-3] is rather complicated and it could be useful to simplify it. We use the dressing technique based on classical Darboux transformations (DT) with a new applications to Green function construction [4]. It is the main aim of this note with eventual possibility to generalize the result due to universality of the technique when a link to integrable (soliton, SUSY) systems is established [5]. The suggested approach open new possibilities; for example it allows to show the way to calculate the quantum corrections to Q-balls [6] and periodic solutions of the models. The last problem is posed in the useful review [7].

76

 $^{^1}$ Это наша последняя совместная работа с безвременно ушедшим профессором С.Б. Лебле. В свое время мы выложили ее в ArXiv и планировали отправить в один из реферируемых журналов. К сожалению, потом мы занялись более «срочными» делами, и работа так и осталась в ArXiv дожидаться своего часа. В память о своем ушедшем старшем товарище я публикую эту статью в «Вестнике» без каких-либо изменений ($A.B.\ Юров$).

77

2. Heat equation Cauchy problem

We will base on the DT-covariance of the heat equation for the function $\rho(\tau, x, y)$:

$$-\rho_{\tau} + \rho_{xx} + u(x)\rho = 0, \tag{1}$$

that means the form-invariance of (1) with respect to iterated DT, defined by the Wronskian $W[\phi_1,...,\phi_N]$ of the solutions of (1):

$$\rho \to \rho[N] = \frac{W[\phi_1, ..., \phi_N, \rho]}{W[\phi_1, ..., \phi_N]},$$

$$u \to u[N] = u + 2ln_{vv}W[\phi_1, ..., \phi_N].$$
(2)

Consider now a Cauchy problem for the equation (1), where u(x) represents the reflectionless potential in a sense that it could be produced by the DT and the initial condition is

$$\rho(0, x, y) = \delta(x - y). \tag{3}$$

The problem is formulated for a Green function: it is rather general and may be applied as a model of classical diffusion or heat conductivity. We, however, would follow other applications in the theory of quasiclassical quantization, where the function ρ is treated as density matrix whence τ stands for inverse temperature.

The algorithm of such problem solution is the dressing procedure organized by a sequence of DTs defined by (2):

$$(\frac{\partial}{\partial x} - \ln_x \phi_1(x, y)) \rho_0(0, x, y) = g_1(x, y),$$

$$(\frac{\partial}{\partial x} - \ln_x \phi_2[1](x, y)) g_1(x, y) = g_2(x, y), ...,$$

$$(\frac{\partial}{\partial x} - \ln_x \phi_k[k-1](x, y)) g_{k-1} = g_k x, y,$$

$$g_N(x, y) = \delta(x, y), 2 \le k \le N$$

$$(4)$$

and the following theorem.

Theorem. The function $\rho[N]$ being built by (2) will be a solution of the problem (1, 3) with the potential u[N], if $\rho(\tau, x, y)$ is a solution of the (1) with the initial condition $\rho_0(0, x, y)$.

The result is used when static solutions of ϕ^4 model are quantized by means of Riemann function $\zeta(s)$ [1–3] expressed via the Green functions of the (1) (see also [4]). The one-loop quantum correction to action is evaluated directly as

$$S_q = -\zeta'(0).$$

3. Example of kink

Most popular example of the kink is obtained in this scheme by means of DT over zero seed u=0. The solution ρ of (1) with ρ_0 as initial condition for this case is a simple heat equation solution

$$\rho(\tau, x.y) = \frac{1}{2\sqrt{\pi\tau}} \int_{-\infty}^{\infty} \rho_0(z, y) \exp[-(x - z)^2 / 4\tau] dz.$$
 (5)

The initial condition ρ_0 is evaluated by direct integration in (4):

$$\rho_0(x,y) = \phi_1(x) \begin{cases} \phi_1^{-1}(y), & x > y \\ 0, & x < y \end{cases}$$
 (6)

The Green function $\rho[2]$ (density matrix) for the kink solution as the potential is built by the two-fold DT by the Wronskian formula (2) that results in

$$\rho[2](\tau, x, y) = \exp\left[\frac{-(x - y)^{2}}{4\tau}\right] / 2\sqrt{\pi\tau} + \frac{1}{2} \sum_{m=1}^{2} \rho_{m} \psi_{m}(x) \psi_{m}(y) \left[Erf\left[\frac{(x - y + 2b_{m}\tau)}{2\sqrt{\tau}}\right] - Erf\left[\frac{(x - y - 2b_{m}\tau)}{2\sqrt{\tau}}\right],$$
(7)

where $b_k=km/\sqrt{2}$, $\rho_k=||\psi||^{-2}$, k=1, 2. After multiplication of the Green function by $\exp[-4m^2\tau]$:

$$\rho \to \rho \exp[-4m^2\tau]$$

the first term of the Green function leads to a divergent integral. This divergency is well-known, its origin is a zero vacuum oscillations. In our approach this fact has transparent explanation, because the divergent term is simply a solution of heat equation with constant coefficients, that appear when the self-action of scalar field is neglected. Such divergence is usually compensated by addition of contra terms of normal order.

Our procedure deletes all ultraviolet divergencies of 1+1 ϕ^4 model including energy of zero oscillations and one-meson states if one evaluates the generalized zeta-function by the formula

$$\zeta_D(s) = M^{2s} \frac{\int_0^\infty \gamma(t) t^{s-1} dt}{\Gamma(s)}.$$
 (8)

 $\Gamma(s)$ is the Euler gamma function and M is a mass scale. The function $\gamma(t)$ in the integrand of (8) is expressed via the Green functions $G(x,y,\tau)$ and $G_0(x,y,\tau)$ difference. The result coincides with one from [1–3].

4. Conclustion

As a conclusion let us note that this approach is elaborated in [8] (published in a local conference abstract book) and allows to calculate one-loop corrections to the N-level reflectionless potential and, very similarily, solitons of SG. Some eventual applications are visible in the case studied at [8].

78

References

- 1. *Konoplich R.V.* Quantum corrections calculations to nontrivial classical solutions via zeta-function // TMP. 1987. Vol. 73. P. 379 392.
- 2. *Konoplich R. V.* The zeta-function method in field theory at finite temperature // Teoret. Mat. Fiz. 1989. Vol. 78, № 3. P. 444 457.
- 3. *Konoplich R. V.* One-loop quantum corrections to the energy of extended objects // Nuclear Phys. B. 1989. Vol. 323, No. 3. P. 660 672.
- 4. Leble S., Zaitsev A. The Modified Resolvent for the One-dimensional Schrodinger Operator with a reflectionless potential and Green Functions in Multidimensions // J. Phys. A: Math. Gen. 1995. Vol. 28. P. 585 588.
- 5. Sukumar C. V. Green's functions, sum rules and matrix elements for SUSY partners // J. Phys. A 37. 2004. № 43. P. 10287 10295.
- 6. *Cervero J.M., Estevez P.G.* Exact two-dimensional Q-balls near the kink phase // Phys. Lett. B. 1986. Vol. 176. P. 139 142.
- 7. *Tuszyński J. A., Dixon J. M., Grundland A. M.* Nonlinear Field Theories and Non-Gaussian Fluctuations for Near-Critical Many-Body Systems // Fortschr. Phys. 1994. Vol. 42, № 4. P. 301 337.
- 8. *Leble S.B., Yurov A.V.* On the quantum corrections to classical solutions via generalized zeta-function // Abstracts of XXVII sci. conf. Kaliningrad State University. Kaliningrad, 1993. P. 157.
- 9. *Novikov S.P., Manakov S.V., Pitaevskii L.P., Zakharov V.E.* Theory of Solitons // The inverse scattering method. Contemp. Soviet Math. N. Y., 1984.
- 10. *Tuszyński J.A., Middleton J., Christiansen P.L., Dixon J.M.* Exact eigenfunctions of the linear ramp potential in the Gross-Pitaevskii equation for the Bose − Einstein condensate // Phys. Lett. A 291. 2001. № 4-5. P. 220 − 225.

The authors

Prof. Sergey B. Leble, Immanuel Kant Baltic Federal University, Russia. E-mail: lebleu@mail.ru

Prof. Artyom V. Yurov, Immanuel Kant Baltic Federal University, Russia. E-mail: AIUrov@kantiana.ru

Об авторах

Сергей Борисович Лебле — д-р физ.-мат. наук, проф., Балтийский федеральный университет им. И. Канта, Россия.

E-mail: lebleu@mail.ru

Артем Валерианович Юров — д-р физ.-мат. наук, проф., Балтийский федеральный университет им. И. Канта, Россия.

E-mail: AIUrov@kantiana.ru

79