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The article is dedicated to the task of construction and analysis of exactly 
solvable mathematical model for the mutagenesis in mitochondrial DNA 
(mtDNA). We begin by demonstrating that the average amounts of all four 
types of nucleotides (adenine A, guanine G, cytosine C and thymine T) is de-
termined by a system of four O. D. E.’s of first order, and that this system is 
further reducible to a single linear inhomogeneous O. D. E. of third order. 
Next, we classify all possible solutions to that equation and derive an explicit 
general form of equilibrium (i. e. asymptotic) states of mtDNA as a function of 
a mitochondrial mutational spectrum. 

 
Работа посвящена точному математическому моделированию му-

тагенеза в митохондриальном ДНК (мтДНК). Показано, что динамика 
среднего количества четырех нуклеотидов (аденина A, гуанина G, цито-
зина C и тимина T) в мтДНК описывается системой из четырех обык-
новенных дифференциальных уравнений первого порядка, которые мо-
гут быть сведены к одному линейному неоднородному дифференциально-
му уравнению третьего порядка. Классифицированы все возможные типы 
решений этого уравнения и выведен явный вид равновесных (асимп-
тотических) состояний мтДНК как функции митохондриального му-
тационного спектра. 
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1. About 2.5 billion years ago a momentous event has taken place: a free-

living  -proteobaterium has been ingested by a different cell and instead of 
being digested became a symbiont for its host [1; 2]. This seemingly 
innocuous affair has turned out to be extremely profitable for everyone 
involved, eventually producing a new very successful lineage of cells that 
we now call the eukaryotes, which now includes such magnificent offsprings 
as plants, fungi and animals. The mitochondria became a sort of a power 
plant, producing copious amounts of ATP molecules, that is used as an 
energy source in various metabolic processes inside of a eukaryotic cell [3, 
p. 547, 556]. But mitochondria play a number of other important roles in 
various aspects of eukaryotic life cycles, such as initiating an apoptosis [4], 
storing the calcium ions [5] and so on. Still, the mitochondria, being a 
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symbiont, has retained its own mitochondrial DNA (which is usually 
shortened to mtDNA), which exists and replicated independently of a 
nuclear DNA. And the mtDNA is interesting in a number of ways. First of 
all, it is circular, making it quite distinct from the linear nuclear DNA of 
animals. Second, during the replication of mtDNA its two strands behave 
very differently, as one of them (so called “heavy strand”) spends tens of 
minutes (30 min to 1 hour) to grow a new complimentary chain —the other 
one (the “light strand”) receiving its new chain almost immediately (see Fig.) 
[6]. This disparity means that if any kind of damage occurs during the 
mtDNA replication (say, due to such reactive oxygen species as peroxides or 
hydroxyl radicals) — it will most certainly occur at a heavy strand, as the 
one that spends more time exposed to the elements. In fact, as has been 
demonstrated in [7], it is this endogenous mutational mechanism that is 
responsible for a majority of mutations in the human mtDNA. 

 

 
 

Fig. Two proposed mechanisms of replication of mtDNA.  
The evidences suggest that the strand-displacement (the upper one) 

is the correct one. (Adapted from [6]) 
 
Hence, we end up with a very interesting observation. Suppose we want 

to study the mutagenesis of mtDNA — for example, to use it as an indicator 
for a cellular aging [8]. Taking into account the aforementioned mtDNA 
strands asymmetry, we can safely limit ourselves to describing the mutage-
nesis on heavy strand only. This in turn implies that instead of sticking to 
the classical Kimura model [9; 10], originally designed for the nuclear DNA 
and making no distinction between the mutagenesis of individual nucleoti-
des, we can now attempt to construct a mathematical model that accounts 
for every type of nucleotide on the heavy strand separately. 
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So, how shall we can study the process and the final outcome of neutral 
mutagenesis of genomes characterized by strongly asymmetric replication 
(not limited to mtDNA, but also including the COVID-19 RNA etc.). The 
main idea would be to employ an entirely analytical model, based in the 
ordinary differential equations. 

For that end, let us consider a sample consisting of a neutral part of 
mtDNA (either in its entirety or a part of it), and denote the total number of 
the nucleotides on it by N . Next, let us denote by , , ,a   g  τ  c  the average 
amounts of A, G, T and C nucleotides on our sample1. All of these functions 
depend on time t . 

Next, we introduce the mutation spectrum: the twelve probabilities of a 
given nucleotide (say, A) to mutate to any other (i. e. to G, T or C). We will 
denote these probabilities by xyr , where x  denotes the type of an original 

nucleotide and y  — the new nucleotide (e. g., agr  is a probability of an 

A G  mutation). The rate of any type of mutation (say, G A ) is propor-
tional to: a corresponding probability gar , to a time interval Δt  (the more ti-

me has passed the more probable it will be for G to turn to A), and, finally, to 
a total amount of original nucleotide (function  tg ). 

Say, we want to look at the time-dependent evolution of the A  nucleo-
tides. If at time t  we have an average of  a t  adenine on our sample, how 

much will remain after Δ 1 t   has passed? 
In order to answer this question we have to account for both a surplus of 

brand new A  nucleotides, produced from ,G T  and C ; as well as for the re-
moval of at least some old A  nucleotides by means of mutation. 

This leads to the following relation: 

             t Δ Δ ga a ca ag a aca t a t t r g t r t r c t r r r a t                 

             
t Δ

Δ ga a ca ag a ac

a t a t
r g t r t r c t r r r a t

t  
 

           

Naturally, if we then take a limit Δ 0t  , then the approximate equality 
will be exact (if have averaged over sufficiently many RNA’s!) and we’ll end 
with an ordinary linear homogeneous differential equation of 1st order. 
Repeating the same process for the remaining 3 nucleotides we’ll end up 
with the following closed system of O. D. E.’s: 

         ag a ac ga a ca

da
r r r a t r g t r t r c t

dt              ,              (1) 

         ag ga g gc g cg

dg
r a t r r r g t r t r c t

dt             ,               (2) 

                                                           
1 Naturally, in order for our model to work the average has to be taken over suf-
ficiently many copies of COVID-19’s RNA — otherwise the functions , , ,a  g  τ c  will 
be neither continuous nor differentiable. 
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         a g a g c c

d
r a t r g t r r r t r c t

dt      
           ,              (3) 

         ac gc c ca cg c

dc
r a t r g t r t r r r c t

dt            .              (4) 

There are a couple of approaches one can utilize to solve the system 
(1)—(4). For example, one can rewrite this system as a single matrix equation 
of first order: 

a a
g gd

M
dt

c c
 

   
   
    
   
   
   

 

and then look for the eigenvalues of the 4x4 matrix M  (see, for example, the 
brute-forcing approach provided in [11]). However, if we are going to study 
all the possible modes of mutagenesis, it will be worthwhile to solve the 
system (1)—(4) in general, since it will only provide us will all permissible 
solutions for (1)—(4), but can also be used as an approach in the more ge-
neral case where the mutational spectrum is a function of time. 

With that said, let us get back to our system. Note, that if we sum up 
these four equation, we’ll have 

0                         
dgda d dc

a g c N const
dt dt dt dt

           ,        (5) 

which is both consistent with our expectations, and allows us to reduce the 
system (1—4) to just 3 equations by simply removing one of the functions 

using (5). Say, we get rid of  c t . Then 

     

     

     

da
k a t k g t k t f

dt
dg

k a t k g t k t f
dt
d

k a t k g t k t f
dt





 

       

       

       

11 12 13 1

21 22 23 2

31 32 33 3

 ,

 

                          (6) 

where 1 2 3,   ,   ,ca cg cf r N f r N f r N       and ijk  are the elements of matrix K : 

 
 

 
.

ag a ac ca ga ca a ca

ag cg ga g gc cg g cg

a c g c a g c c

r r r r r r r r

K r r r r r r r r

r r r r r r r r

 

 

       

      
 
       
 
       

    (7) 

At this juncture it is useful to make an additional reasonable assumption: 
that the mutation spectrum is time-independent (i. e. that all rates of muta-
tion are constant). If it is true then it will be possible to reduce the resulting 
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system even further — up to a single equation! For example, it is possible to 
show that  a t  will satisfy the following inhomogeneous linear differential 

equation of third order: 

Δ ,a r a d a a f                                                 (8) 

where ,   ,  Δ,   0r d f   are all positive (!) constants that are derived from ijk  as 

follows: 

 11 22 33 ,r k k k                                                  (9) 

11 12 11 13 22 23

21 22 31 33 32 33

,
k k k k k k

d
k k k k k k

                                 (10) 

11 12 13

21 22 23

31 32 33

Δ det ,
k k k
k k k K
k k k

                                      (11) 

1 12 13

2 22 23

3 32 33

.
f k k

f f k k
f k k

                                                    (12) 

Interestingly, the multiple r  has a very simple form if we revert back 
from ijk  to xyr : it is just a sum of all 12 probabilities xyr . Unfortunately, the 

remaining 3 multiples are less fortunate, and are actually easier to handle 
written in the forms of determinant (10—12). 

It is easy to show that the general solution of our third-order equation (8) 
has a form (see, for example, [12; 13]): 

    ,
Δ
f

a t a t                                               (13) 

where  a t  is a general solution of the following linear homogeneous equa-
tion: 

Δ 0.a r a d a a                                               (14) 

The exact form of a  will depend on the roots of the companion charac-
teristic equation [12; 13]: 

3 2 Δ 0.r d                                                 (15) 

There exist four possibilities (here jС  denotes arbitrary constants): 

1. There are 3 distinct negative real roots 1 2 3, , 0    . Then 

31 2
1 2 3 0  when   .tt ta C e C e C e t            

2. There are 3 negative real roots 1 2 3, , 0    , but 2 3  . Then 

1 2
1 2 3(   ) 0  when   .t ta C e C t C e t            
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3. There are three identical negative real roots 1 2 3 0
3
r       : 

2 /3
1 2 3( ) 0  when   .r ta C t C t C e t           

4. There is one real negative root 1 0   and two complex conjugate 

roots 2 3Λ ,   Λi i       , where Λ 0 . In this case 

1 Λ
1 2 3( cos   sin ) 0  when    .t ta C e C t C t e t              

Note that in all four cases the overall behavior of the solution of (14) is 
controlled by asymptotic convergence to zero for sufficiently large 0t  . 
Thus, given sufficiently large time, the average amount of A nucleotides will 
always converge to the equilibrium state: 

 lim ,
Δt

f
a t


                                                  (16) 

where 

 
 

,
ca ga ca a ca

cg ga g gc cg g cg

c g c a g c c

r r r r r

f N r r r r r r r

r r r r r r r



 

      

 

      

    

               (17) 

Δ ,
ag a ac ca ca ga ca a

cg ag ga g gc cg cg g

c a c g a g c c

r r r r r r r r
r r r r r r r r
r r r r r r r r

 

 

       

    
     

    
               (18) 

which depend only on the total amount  N  of nucleotides in the sample and 
the mutational spectrum. We would like to emphasize that the resulting 
analytical formulas do not in any way depend on either the initial state of 
the sample (i. e. on 0 0 0 0,  ,  , a g c  ) or on the particulars of how the equilibrium 
is reached — all of that is effectively swept under a rug by the asymptotic 
behavior of exponential functions in the solutions for a . 

We conclude by noting that the similar approach can also be used for the 
remaining three nucleotides. But the formulas for their equilibrium states 
might also be very easily derived directly from (16—18). All one has to do 
would be to take these formulas and simply switch the indices. For example, 
the equilibrium state of T nucleotide can be gained by switching a   in 
(17—18), so that car  becomes cr  , whereas cr   is replaced by car , etc. 
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