S.I. Aleshnikov

ABOUT RESIDUES OF WEIL DIFFERENTIALS IN A CONSTANT FIELD EXTENSION OF AN ALGEBRAIC CURVE

In this work we consider the relation between the residues of a Weil differential ω on a non-singular projective algebraic curve C over a perfect constant field. Let P is a plase of curve C of degree n, F_P is the residue class field, which is a finite Galois extension of constant field K, F = K(C) is the field of rational functions on C, $F' = F \cdot F_P$ is the constant field extension of field F by means of F_P . Then in F' there exist exactly n places $Q_1, ..., Q_n$ lying over P. The degree of Q_i is one, for any i: $1 \le i \le n$. Moreover $\operatorname{Res}_P(\omega) = \sum_{i=1}^n \operatorname{Res}_Q(\omega)$, and a local component ω_P of the Weil differential ω in P can be viewed as $\omega_P(u) = \operatorname{Res}_P(u \cdot \omega)$ for any $u \in F$, that gives a simple proof of the Residue Theorem.

УДК 512.7

НОВОЕ ДОКАЗАТЕЛЬСТВО ДЛЯ ОДНОЙ АСИМПТОТИЧЕСКИ ХОРОШЕЙ ПОСЛЕДОВАТЕЛЬНОСТИ КРИВЫХ

И.С.Алешников

(Университет Эссена)

В настоящей работе дается новое, более простое, доказательство того, что последовательность $X=(X_1,\ X_2,\ X_3,\ ...)$ проективных, неприводимых, невырожденных алгебраических кривых над полем \mathbb{F}_{q^2} , определяемых уравнениями: $x_{i+1}^q + x_{i+1} \cdot \frac{1}{x_i^{q-1}} = x_i$ для любого $i = \overline{1, n-1}$, является асимптотически хорошей.

Определение. Пусть $C=(C_1,\ C_2,\ C_3,\ ...)$ - последовательность проективных, неприводимых, невырожденных алгебраических кривых над полем \mathbb{F}_s , $N(C_i)$ - число рациональных точек, а $g(C_i)$ - род кривой C_i . Положим $\lambda(C)=\lim_{i\to\infty}\frac{N(C_i)}{g(C_i)}$. Последовательность C называется асимптотически хоро-

шей (соотв. асимптотически плохой), если $\lambda(C)>0$ (соотв. $\lambda(C)=0$). Основным результатом является следующая

Теорема. Пусть $F_n = \mathbb{F}_{q^2} \left(x_1, ..., x_n \right)$ ($\forall n \ge 1$) - поле рациональных функций кривой X_n , тогда башня полей $F = (F_1, F_2, F_3, ...)$ достигает границы Дринфельда-Владуца над полем \mathbb{F}_{q^2} , т.е. $\lambda(\mathsf{F}) = \lim_{i \to \infty} \frac{N(F_i)}{g(F_i)} = q - 1$.

Лемма 1. Пусть функциональное поле $F = \mathbb{F}_{q^2}(y, z)$ задается при помощи уравнения $z^q + z \cdot \frac{1}{v^{q-1}} = y$, тогда:

1) расширение $F/\mathbb{F}_{q^2}\left(y\right)$ является расширением Галуа и

$$[F: \mathbb{F}_{q^2}(y)] = [F: \mathbb{F}_{q^2}(z)] = q;$$

- 2) функция y имеет единственный полюс P_{∞} в F; Эта точка полностью разветвлена в $F/\mathbb{F}_{q^2}(y)$ и является общим полюсом y и z в F;
- 3) функция z имеет единственный нуль Q_0 в F; эта точка полностью разветвлена в $F/\mathbb{F}_{a^2}(z)$ и является общим нулем y и z в F;
- 4) нуль функции y в $\mathbb{F}_{q^2}(y)$ (соотв. полюс функции z в $\mathbb{F}_{q^2}(z)$) полностью разлагается в $F/\mathbb{F}_{q^2}(y)$ (соотв. в $F/\mathbb{F}_{q^2}(z)$); если точки $Q_0, R_1, ..., R_{q-1}$ нули функции y в F, то главные дивизоры y и z в F имеют вид:

$$(y) = Q_0 + R_1 + ... + R_{q-1} - qP_{\infty}, (z) = qQ_0 - R_1 - ... - R_{q-1} - P_{\infty};$$

- 5) точка P_{∞} является единственной точкой F, разветвленной над $\mathbb{F}_{q^2}(y)$; ее дифферентная экспонента в расширении $F/\mathbb{F}_{q^2}(y)$ равна $d(P_{\infty})=q^2+q-2$;
- 6) точка Q_0 является единственной точкой F, разветвленной над $\mathbb{F}_{q^2}(z)$; ее дифферентная экспонента в расширении $F/\mathbb{F}_{q^2}(z)$ равна $d(P_\infty)=q^2+q-2$.

Доказательство получается при помощи предложений III.1.14, III.5.10, III.5.12 и теоремы III.5.1 [1].

Лемма 2. Для башни функциональных полей \mathbf{F} =(\mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 , ...) над \mathbb{F}_{q^2} справедливы следующие свойства:

1)[
$$F_n$$
: $\mathbb{F}_{q^2}(x_i)$]= q^{n-1} для всех $i = \overline{1,n}$;

2) если точка $P \in \mathbb{P}(F_n)$ является полюсом x_1 в F_n , то она является также и полюсом функций $x_2, x_3, ..., x_n$, при этом P разветвлена в расширении F_n/F_1 и не

разветвлена в $F_n/\mathbb{F}_{q^2}(x_n)$; ее дифферентная экспонента в расширении F_n/F_{n-1} равна $d(P)=q^2+q-2$;

3) если точка $R \in \mathbb{P}(F_n)$ не является ни полюсом, ни нулем x_1 , то R не разветвлена в расширении F_n/F_1 .

Доказательство. Пусть $P \in \mathbb{P}(F_n)$ - полюс x_1 , тогда в силу леммы 1 сужение точки P полностью разветвлено в F_n/F_1 и является простым полюсом x_2 . В свою очередь функция x_2 имеет единственный полюс в $\mathbb{F}_{q^2}(x_2,x_3)$ индекса ветвления Q и эта точка является простым полюсом x_3 , а, следовательно, снова в силу леммы 1, не разветвлена в $\mathbb{F}_{q^2}(x_2,x_3)/\mathbb{F}_{q^2}(x_3)$. По индукции получаем, что P является общим полюсом функций $x_2,x_3,...,x_n$ и индексы ветвления сужений точки P в расширениях $\mathbb{F}_{q^2}(x_i,x_{i+1})/\mathbb{F}_{q^2}(x_i)$ (соотв. $\mathbb{F}_{q^2}(x_i,x_{i+1})/\mathbb{F}_{q^2}(x_{i+1})$) имеют следующий вид:

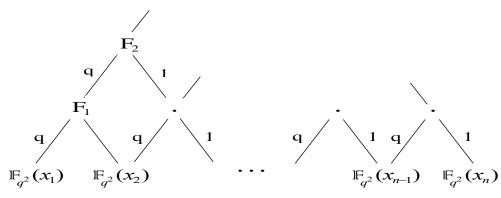


Рис. 1

Следующие утверждения следуют из предложения 1.2 [2] и рисунка 1:

- 1) P полностью разветвлена в $F_n \! / \! F_1$ и имеет индекс ветвления $q^{n-1};$
- 2) $[F_n: \mathbb{F}_{a^2}(x_i)] = q^{n-1}$ для всех $i = \overline{1,n}$;
- 3) P не разветвлена в $F_n/\mathbb{F}_{q^2}(x_n)$;
- 4) дифферентная экспонента точки P в расширении F_n/F_{n-1} равна $d(P)\!\!=\!\!q^2\!\!+\!q\!\!-\!2.$

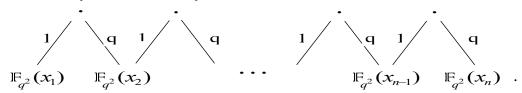
Если точка $R \in \mathbb{P}(F_n)$ не является ни полюсом, ни нулем x_1 , то по индукции при помощи леммы 1 видно, что R не является также ни полюсом, ни нулем функции x_i для всех $i = \overline{1, n-1}$, т.е. сужение R не разветвлено в расширении $\mathbb{F}_{q^2}(x_i, x_{i+1})/\mathbb{F}_{q^2}(x_i)$ для всех $i = \overline{1, n-1}$. Тогда в силу предложения 1.2 [2] получаем требуемое утверждение.

Наша дальнейшая цель - определить степень дифференты $\mathrm{Diff}(F_n/F_1)$. В силу предыдущей леммы остается только изучить поведение нулей $\mathrm{Q}\!\in\!\mathbb{P}(F_n)$ функции x_1 в расширении F_n/F_{n-1} . Применяя лемму 1, получаем для них следующие возможности:

- 1) Q является общим нулем функций $x_1, x_2, ..., x_n$;
- 2) существует t, 1≤t<n такое, что: a) ${\bf Q}$ общий нуль функций $x_1,...,x_t$;
- b) Q общий полюс функций $x_{t+1}, ..., x_n$.

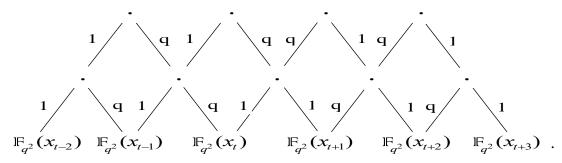
Условие: Q нуль функции x_t и полюс функции x_{t+1} влечет за собой как условие a), так и b).

В первом случае сужение Q на $\mathbb{F}_{q^2}(x_i, x_{i+1})$ имеет следующие индексы ветвления над $\mathbb{F}_{q^2}(x_i)$ (соотв. $\mathbb{F}_{q^2}(x_{i+1})$):



Следовательно точка Q является неразветвленной в расширении F_n/F_1 .

Во втором случае индексы ветвления сужения Q на $\mathbb{F}_{q^2}(x_i, x_{i+1}, x_{i+2})$ представлены на следующем рисунке:



Из этого рисунка невозможно определить индексы ветвления Q в расширении $F_n/\mathbb{F}_{q^2}(x_i)$ для всех і. В следующей лемме вычисляется индекс ветвления точки Q в расширении $\mathbb{F}_{q^2}(x_{t-1}, x_t, x_{t+1}, x_{t+2})/\mathbb{F}_{q^2}(x_{t-1}, x_t, x_{t+1})$, позволяющий воссоздать всю картину.

Лемма 3. Для $k=\overline{1,t-1}$ положим $E_k=\mathbb{F}_{q^2}$ $(x_{t-k},...,x_{t+k})$ и $H_k=E_k(x_{t+k+1})$. Если точка $Q\in\mathbb{P}(H_k)$ является нулем x_t , а также полюсом x_{t+1} , то она не разветвлена в H_k/E_k .

Доказательство. Пусть $z \in E_k$. Для $t = \overline{1, n-1}$ положим $u_{t+1} = x_{t+1} x_t$, тогда $H_k = E_k(u_{t+k+1} - z)$, причем $u_{t+k+1} - z$ - нуль неприводимого сепарабельного многочлена

$$\varphi(T) = T^q + T - (x_{t+k}^{q+1} - (z^q + z)) \in E_k[T].$$

Так как нормирование $v_Q(\phi'(u_{t+k+1}-z))=v_Q(1)=0$, то в силу предложения III.5.10 [1] достаточно показать, что существует элемент $z \in E_k$ такой, что

$$v_{\mathbf{Q}}((\mathbf{u}_{t+k+1}-z)^{\mathbf{q}}+(\mathbf{u}_{t+k+1}-z))=v_{\mathbf{Q}}(x_{t+k}^{q+1}-(z^{\mathbf{q}}+z))\geq 0.$$
 (1)

Заметим, что существует $\alpha \in \mathbb{F}_{q^2}^*$: $\alpha^{q-1}+1=0$ и $\nu_Q(u_{t+k}-\alpha)>0$. Используя доказательство леммы 3.4 [2], индукцией по k можно доказать, что $\nu_Q(u_{t+k+1}-\frac{\alpha^{q+1}}{u_{t+1}})\geq 0$, что доказывает (1).

Лемма 4. Пусть $1 \le t < n$ и точка $Q \in \mathbb{P}(F_n)$ удовлетворяет следующим свойствам: а) Q общий нуль функций $x_1, ..., x_t$; b) Q общий полюс функций $x_{t+1}, ..., x_n$. Тогда:

- 1) если n≤2t, то точка Q является неразветвленной в расширении F_{n}/F_{n-1} ;
- 2) для 2t<n Q разветвлена в F_n/F_{2t} и для 2t≤s≤n сужение Q не разветвлено в F_n/\mathbb{F}_{a^2} (x_s) ;
- 3) если 2t<n, то дифферентная экспонента точки Q в расширении F_n/F_{n-1} равна $d(Q)=q^2+q-2$.

Доказательство непосредственно следует из леммы 2 и предложения 1.2 [2].

Лемма 5. Для $1 \le t < \frac{n}{2}$ определим множество $X_t = \{Q \in \mathbb{P}(F_n) | Q$ нуль x_t и полюс $x_{t+1}\}$ и дивизор $A_t = \sum_{Q \in X_t} Q$. Тогда $\deg A_t = (q-1)q^{t-1}$.

Доказательство. Согласно лемме 1 главные дивизоры элементов \mathcal{X}_t и \mathcal{X}_{t+1} имеют вид:

$$(x_{t}) = Q_{0}^{t} + R_{1}^{t} + ... + R_{q-1}^{t} - qP_{\infty}, \ (x_{t+1}) = qQ_{0}^{t} - R_{1}^{t} - ... - R_{q-1}^{t} - P_{\infty}.$$

Тогда для любой точки $Q \in X_t$ существует $i \in \{1,2,...,q-1\}$ такой, что $Q \cap \mathbb{F}_{q^2}(x_t,x_{t+1}) = R_i^t$. В силу леммы 3 и рисунка 1 получаем, что индекс ветвления ограничения Q в расширении $F_{2t}/\mathbb{F}_{q^2}(x_t,x_{t+1})$ равен q^{t-1} . Так как точка Q полностью разветвлена в F_n/F_{2t} , то $deg\ Q = deg\ (Q \cap F_{2t})$. Таким образом:

$$deg \ A_{t} = \frac{\sum_{i=1}^{q-1} deg \ Con_{F_{2t}/F_{q^{2}}(x_{t},x_{t+1})}(R_{i}^{t})}{q^{t-1}} = (q-1)q^{t-1}.$$

Лемма 6. Для $n \ge 2$ степень дифференты расширения F_n/F_{n-1} равна $deg \ Diff(F_n/F_{n-1})=q^2+q-2$.

Доказательство получается из определения дифференты и лемм 3, 4 и 5.

Лемма 7. Для $\alpha \in \mathbb{F}_{q^2}$ обозначим $R_{\alpha} \in \mathbb{P}(F_1)$ - нуль элемента x_1 — α в F_1 . Пусть $S = \{R_{\alpha} \in \mathbb{P}(F_1) | \alpha \in \mathbb{F}_{q^2}^* \}$, тогда все точки $R \in S$ полностью разветвлены в расширении F_n/F_1 .

Доказательство. Пусть $R \in S$. Индукцией по n докажем следующие утверждения: R полностью разветвлена в F_n/F_1 ; для любого расширения $R' \in \mathbb{P}(F_n)$ точки R существует $\alpha \in \mathbb{F}_{q^2}^*$ такое, что R' является нулем $x_n - \alpha$.

Для n=1 утверждения тривиально. Предположим, что они выполняются для n. Так как $F_{n+1}=F_n(x_{n+1})$, где x_{n+1} - корень неприводимого многочлена $\phi(T)=T^q+T\cdot \frac{1}{x_n^{q-1}}-x_n\in O_{R'}[T]$, то по теореме Куммера (III.3.7 [1]) получаем, что точка R' полностью разлагается в расширении F_n/F_{n-1} и для любого расширения $R''\in \mathbb{P}(F_{n+1})$ точки R' существует $\beta\in \mathbb{F}_{q^2}^*$ такое, что R'' является нулем $x_{n+1}-\beta$.

Доказательство теоремы. Рассмотрим подбашню $F'=(F_1', F_2', F_3', ...)$ башни F, где $F_n'=F_{2n-1}$. Так как $F' \prec F \prec F'$, то согласно следствию 2.4 [2] имеем $\lambda(F)=\lambda(F')$. Известно, что $\lambda(F')\leq q-1$. Тогда, применяя предложение 2.7 [2] к башне F', получаем $\lambda(F')=q-1$.

Библиографический список

- 1. *Stichtenoth H.* Algebraic Function Fields and Codes. Berlin-Heidelberg-New York: Springer, 1993.
- 2. Garcia A., Stichtenoth H. Asymptotically good towers of function fields over finite fields // J. of Number Th. 1996. №61. P. 248-273.

I.S. Aleshnikov

A NEW PROOF FOR ONE ASYMPTOTICALLY GOOD SEQUENCE OF CURVES

In the presented work it is given a new, more simple proof of the fact, that the sequence $X=(X_1, X_2, X_3, ...)$ curves over the field \mathbb{F}_{q^2} , defined with equations:

 $x_{i+1}^q + x_{i+1} \cdot \frac{1}{x_i^{q-1}} = x_i$ (for any $i = \overline{1, n-1}$), is asymptotically good and moreover it reaches the Drinfeld - Vlăduţ bound over the field \mathbb{F}_{q^2} .

УДК 514.76

СВОЙСТВО ВЗАИМНОСТИ ПОВОРОТНЫХ ДИФФЕОМОРФИЗМОВ ДВУМЕРНЫХ РИМАНОВЫХ ПРОСТРАНСТВ

А.В. Винник

(Одесский государственный университет)

Полностью исследован вопрос о взаимности поворотных диффеоморфизмов [1] двумерных римановых пространств. Доказано, что не существует нетривиальных поворотных диффеоморфизмов, обладающих свойством взаимности.

Определение 1. Диффеоморфизм $\rho: \overline{\nabla}_2 \to V_2$ называем поворотным, если вследствие его каждая геодезическая кривая $\overline{\gamma}$ из риманова пространства \overline{V}_2 становится изопериметрической экстремалью поворота риманова пространства V_2 .

Определение 2. Поворотный диффеоморфизм $\rho: \overline{V}_2 \to V_2$ обладает свойством взаимности, если обратный диффеоморфизм $\rho^{-1}: V_2 \to \overline{V}_2$ является поворотным.

Рассмотрим двумерные римановы пространства V_2 , \overline{V}_2 с метрическими тензорами g и \overline{g} соответственно. Пусть $g_{ij}(x^1,x^2)$ (i,j=1,2) - компоненты g в некоторой локальной карте. Для кривой $\gamma:(t_0,t_1)\to V_2$ с параметрическими уравнениями $x^h=x^h(t)$ построим векторы $\xi^h=\frac{dx^h}{dt}$, $\xi^h_1=\nabla_t\xi^h$, $\xi^h_2=\nabla_t\xi^h_1$. Здесь ∇_t - оператор ковариантного дифференцирования вдоль γ относительно метрической связности.

Определение 3. Кривые, которые являются решениями вариационной изопериметрической задачи extrem $\theta[\gamma]$, $s[\gamma]$ =const с закрепленными концами, будем называть изопериметрическими экстремалями поворота (ИЭП).

В работах [1-5] показано, что кривая риманова пространства является нетривиальной ИЭП с постоянной \bar{c} только тогда, когда вдоль нее гауссова кривизна пространства не равна нулю и пропорциональна с этой постоянной кривизне кривой:

$$K(x(s)) = \bar{c} k(s), \tag{1}$$

К - гауссова кривизна, k - кривизна γ, s - длина дуги.

Обозначим

$$s[\gamma] = \int \sqrt{\left\langle \xi, \xi \right\rangle} \, dt \, \theta[\gamma] = \int k(s) ds$$