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A note on the scalar curvature
of a compact Riemannian manifold

In the present paper, we formulate conditions for the constan-
cy of the scalar curvature of an n-dimensional (n = 3) compact
Riemannian manifold (M, g). In particular, conditions for the cons-
tancy of the scalar curvature of (M, g) in the case of the quasi-ne-
gative Ricci tensor are found. Conditions are also obtained for a
compact Riemannian manifold (M, g) to be an Einstein manifold.
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1. Introduction and notations

We recall the well-known Yamabe problem from 1960: Let
(M, g) be an n-dimensional (n = 3) compact Riemannian mani-
fold, then there exists a positive and smooth function f on M such
that the Riemannian metric g: = f - g has the constant scalar cur-
vature S. In 1984 an affirmative resolution to this problem was pro-
vided. Detailed information can be found in the monograph [1,
Ch. 4]. In turn, in this article we will formulate conditions for the
constancy of the scalar curvature (M, g) and, as a consequence, a
criterion for the degeneration of a compact Einstein manifold
(M, g) into a Euclidean sphere.
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Let V be the Levi-Civita connection on (M,g) and SPM: =
SP(T*M) be the vector bundle of symmetric bilinear differential p-
forms (p = 1) on (M, g). We denote by Ric and s = traceyRic
the Ricci tensor and the scalar curvature of (M, g), respectively.
The derivatives of Ric and s are related by the following formula
(see [1, p. 35; 43]) 6Ric = —%ds, where the differential operator
8:C*(S2M) - C*®(T*M) is called the divergence (see [1, p. 35])
and defined by the formula §: = —trace, o V. Next define the tra-

celess Ricci tensor Ric = Ric — (s/n)g, then the pointwise or-
thogonal decomposition Ric = Ric + (s/n)g holds. In parti-

cular, if Ric = 0, then the Ricci tensor Ric satisfies the condition
Ric = (s/n)g. In this case (M, g) is called the Einstein manifold
(see [1, p. 44]). Furthermore, if n > 3, then s = const. An exam-
ple of an Einstein manifold is the Euclidean sphere S™ equipped
with its standard metric.

2. The York decomposition for the Ricci tensor

If (M, g) is compact (without boundary), then we can define
the L? inner scalar product of symmetric bilinear differential p-
forms ¢ and ¢ on (M, g) by the formula

(@.0"y = [ ,,9(p, p)dvol,

where dvol; being the volume element of (M, g). We define
§*:C*(T*M) - C*(S5%M) the first-order differential operator by
the formula §*0: = %Lg g, where Lg is the Lie derivative and § = o#
is the vector field dual (by g) to the 1-form. Then the differential
operator § is a formal adjoint operator for §*(see [1, p. 35]). In this
case, we have (p,8*0) = (8¢,0) for any ¢ € C*(S*M) and
6 € C*(T*M).

The following York theorem [2] is a well-known result in Rie-
mannian geometry in the large and it is also included in the mono-
graphs (see, e. g., [1, p. 130]).
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Theorem 1. For any n-dimensional (n = 3) compact Rieman-
nian manifold (M, g) the decomposition

C*(S2M) = (Im8* + C*°M - g) D (5-1(0) N traceg-l(O)) (1)

holds, where both factors are infinite dimensional and orthogonal
to each other with respect to the L? inner scalar product.

Remark. The second factor §~1(0) N tracey 1(0) of (1) is the
space of TT-tensors on (M, g). At the same time, we recall that a
symmetric divergence free and traceless covariant two-tensor is
called TT-tensor (see, for instance, [3]).

If we suppose @ € C®(S2M), then York L?-orthogonal decom-
position formula (1) can be rewritten in the form

o= (GLeg+2g)+ o™ (2)
for some & € C®(TM), some TT-tensor @’T and some scalar fun-
ction A € C*(M). Applying the operator trace, to both sides of
(2), we obtain trace;p = — 66 + nd, where 6 is the g-dual one-
form of & that means 8% = & (see [1, p. 30]). In this case, (2) can
be rewritten in the form (;) = SO + @7, where

p=¢ — (1/n)(traceggo)g
is the traceless part of ¢ and
S0 =60+ (1/n)d0g

denotes the Cauchy — Ahlfors operator S: C®(T*M) - C®(S§M)
actions on the vector space of one-form C*(T*M) and with values
in the vector space C®(SZM) of symmetric traceless bilinear dif-
ferential forms (see, e.g., [4]). It's obvious that S annihilates the
one-form 6 such that 8% = & for a conformal Killing vector & on
(M, g), since the conformal Killing vector ¢ obeys the equation
60 = —(1/n)60 - g (see [5]). Particular cases of a conformal Kil-
ling vector field ¢ is a homothetic vector for which 680 = const
and a Killing vector, for which §6 = 0 (see [5]). Using the above,
we can formulate the following corollary.
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Corollary 1. For any n-dimensional (n = 3) compact Rieman-
nian manifold (M, g) the decomposition

C®(S2M) = ImS @ (5-1(0) N traceg‘l(O)) 3)

holds, where both terms on the right-hand side of (3) are L*-ortho-
gonal to each other.

From the L?-orthogonal decomposition (3) we deduce the L?-or-
thogonal decomposition for the traceless Ricci tensor

Ric = SO + Ric™T 4)
for some one-form 6 € C*°(T*M), some TT-tensor Ric’T €
€ C*(52M) and the Cauchy — Ahlfors operator S. Therefore, we

can formulate the following corollary.

Corollary 2. Let Ric be the traceless Ricci tensor of an n-di-
mensional (n = 3) compact Riemannian manifold (M, g). Then

the L?-orthogonal decomposition Ric = SO + Ric™" holds for its

traceless Ricci tensor Ric.

The formal adjoint operator for S is defined by the formula
S*w = 28w for an arbitrary w € C*(SZM) (see [4]). Then the
elliptic operator of the second kind S$*S: C*(T*M) — C®(T*M)
is well known as the Ahlfors Laplacian (see also [4]). Note that
kerS*S = kerS since (57S6,0) = (56,50) for any 6 €
€ C*®(T*M). Furthermore, the following equation holds (see [6])

$*S0 =— (n—2)/n -ds.

Therefore, in general, the scalar curvatures s of (M, g) is cons-
tant if and only if the vector field §:= 6% is conformal Killing.In
addition, we recall that the kernel of S is trivial if the Ric is quasi-
negative (see [5]). Recall that Ric is quasi-negative means that Ric
is non-positive everywhere but strictly negative somewhere. The
following theorem holds.

Theorem 2. Let (M, g)be an n-dimensional (n = 3) compact

Riemannian manifold and Ric = (%ng +Ag) + Ric™ be the
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York L?-decomposition of its Ricci tensor Ric. Then the scalar cur-
vature s of (M, g) is constant if and only if the vector field & is
conformal Killing. In particular, if the Ricci tensor Ric of (M, g) is
quasi-negative, then the scalar curvature s of (M, g) is constant if
and only if the vector field & is zero.

3. The York decomposition and Einstein manifolds

Let (M,g) be an n-dimensional (n > 3) compact Einstein
manifold such that Ric = Ag. Then from (4) the equality follows
SO + Ric™ = 0. Therefore, if we applying the operator § to both
sides of the equality S8 + Ric™" = 0, we obtain S*S6 = 0. As a re-
sult from SO + Ric™T = 0 we deduce that S8 = 0 and Ric’T = 0.
The opposite is obvious. Using the above, in particular, Theorem 2,
we can formulate the following theorem.

Theorem 3. Let (M, g) be an n-dimensional (n = 3) compact
Riemannian manifold and

1
Ric = (ELfg + Ag) + Ric™T

be the York L?-decomposition of its Ricci tensor Ric. Then (M, g)
is an Einstein manifold if and only if the vector field & is conformal
Killing and the TT-tensor Ric™T is zero. In particular, if the Ricci
tensor Ric of (M, g) is quasi-negative, then (M, g) is an Einstein
manifold if and only if the vector field & must also be zero as must
Ric™T.

According to Theorem 3, we conclude that the definition of an
n-dimensional (n > 3) compact Einstein manifold (M, g) is rela-
ted to the existence (in general) of a non-zero conformal Killing
vector field on (M, g). At the same time, the theorem of Yano and
Nagano [7] states that an n-dimensional simply connected comp-
lete Riemannian manifold (M, g) of positive constant curvature is
the only connected complete Einstein manifold admitting a comp-
lete conformal vector field & which is non-homothetic. Furthermo-
re, (M, g) is conformally diffeomorphic with an n-dimensional
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Euclidian sphere S™. At the same time, we recall that H. Hopf sho-
wed that a compact, simply connected Riemannian manifold with
constant sectional curvature 1 is necessarily isometric to the Eucli-
dian sphere S™, equipped with its standard metric (see [8; 9]). The-
refore, in the Yano and Nagano theorem, (M, g) must be isometric
with the Euclidian sphere S™ if the vector field ¢ has a non-cons-
tant divergence (see also [5, p. 5]). Using our Theorem 2 and the
theorem of Yano and Nagano we can formulate a corollary.
Corollary 3. Let (M, g) be an n-dimensional (n = 3) simply
connected compact Riemannian manifold and let Ric =

= G Leg + /'Ig) + Ric™T be the York L?-decomposition of its Ric-

ci tensor, where the vector field & has a non-constant divergence. If
(M, g) is an Einstein manifold, then it is isometric with an n-di-
mensional Euclidian sphere S™.

Remark. An n-dimensional (n>2) Riemannian manifold
(M, g) is a Ricci almost soliton if and only if the identity RicTT = 0
holds in the orthogonal decomposition of the Ricci tensor (4) (see

[6]).
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3ameTka 0 ckansipHoW KpUBM3HE
KOMMaKTHOrO pumMaHoBa MHOroobpasus

[Toctynuna B pegaxiuio 04.02.2025 r.

B nanHoii cTathe (OPMYIHPYIOTCS HEOOXOIMMBIE M JOCTa-
TOYHBIE YCJIOBUS MOCTOSIHCTBA CKAIAPHOM KPUBHM3HBI N-MEPHOTO
(n = 3) kommakTHOTO prUMaHOBa MHOToOOpasus (M, g). B gact-
HOCTH, HAMIEHBI YCIOBHS ITOCTOSHCTBA CKAJISIPHONW KPHUBHU3HBI
KOMITAKTHOTO PHMaHOBa MHOTOOOpasus B Cilydae KBa3HOTPHIIA-
TENBHOTO TeH30pa Puuun. Takke MOIyYEHBI YCIOBHSI TOTO, YTO
KOMIIAKTHOE pMMaHOBO MHoOroo6pasue (M, g) sBisieTcss MHOr000-
pasuem DHHIITEHHA.

Kntouegvie cn106a: KOMIIaKTHOE PUMaHOBO MHOT000pasue, CKalspHas
KpHBH3HA, pasioxeHue Mopka, MHOroobpasue DifHIITeitHA
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