MSC 2010: 53A45, 53C20

I. A. Alexandrova, S. E. Stepanov (1)

Financial University under the Government of the Russian Federation, 49, Leningradsky Prosp., Moscow, 125993, Russia s.e.stepanov@mail.ru doi: 10.5922/0321-4796-2025-56-2

A note on the scalar curvature of a compact Riemannian manifold

In the present paper, we formulate conditions for the constancy of the scalar curvature of an n-dimensional ($n \ge 3$) compact Riemannian manifold (M, g). In particular, conditions for the constancy of the scalar curvature of (M, g) in the case of the quasi-negative Ricci tensor are found. Conditions are also obtained for a compact Riemannian manifold (M, g) to be an Einstein manifold.

Keywords: compact Riemannian manifold, scalar curvature, York decomposition, Einstein manifold

1. Introduction and notations

We recall the well-known Yamabe problem from 1960: Let (M,g) be an n-dimensional $(n \ge 3)$ compact Riemannian manifold, then there exists a positive and smooth function f on M such that the Riemannian metric $\bar{g} := f \cdot g$ has the constant scalar curvature \bar{s} . In 1984 an affirmative resolution to this problem was provided. Detailed information can be found in the monograph [1, Ch. 4]. In turn, in this article we will formulate conditions for the constancy of the scalar curvature (M,g) and, as a consequence, a criterion for the degeneration of a compact Einstein manifold (M,g) into a Euclidean sphere.

Submitted on February 4, 2025

[©] Alexandrova I. A., Stepanov S. E., 2025

Let ∇ be the Levi-Civita connection on (M,g) and $S^pM:=S^p(T^*M)$ be the vector bundle of symmetric bilinear differential p-forms $(p \ge 1)$ on (M,g). We denote by Ric and $s = trace_gRic$ the Ricci tensor and the scalar curvature of (M,g), respectively. The derivatives of Ric and s are related by the following formula (see [1, p. 35; 43]) $\delta Ric = -\frac{1}{2}ds$, where the differential operator $\delta: C^\infty(S^2M) \to C^\infty(T^*M)$ is called the divergence (see [1, p. 35]) and defined by the formula $\delta: = -trace_g \circ \nabla$. Next define the traceless Ricci tensor Ric = Ric - (s/n)g, then the pointwise orthogonal decomposition Ric = Ric + (s/n)g holds. In particular, if $Ric \equiv 0$, then the Ricci tensor Ric satisfies the condition Ric = (s/n)g. In this case (M,g) is called the Einstein manifold (see [1, p. 44]). Furthermore, if $n \ge 3$, then s = const. An example of an Einstein manifold is the Euclidean sphere S^n equipped with its standard metric.

2. The York decomposition for the Ricci tensor

If (M, g) is compact (without boundary), then we can define the L^2 inner scalar product of symmetric bilinear differential pforms φ and φ on (M, g) by the formula

$$\langle \varphi, \varphi' \rangle \coloneqq \int_{M} g(\varphi, \phi) dvol_{q}$$

where $dvol_g$ being the volume element of (M,g). We define $\delta^*: C^\infty(T^*M) \to C^\infty(S^2M)$ the first-order differential operator by the formula $\delta^*\theta := \frac{1}{2}L_\xi g$, where L_ξ is the Lie derivative and $\xi = \theta^\#$ is the vector field dual (by g) to the 1-form. Then the differential operator δ is a formal adjoint operator for $\delta^*(\text{see }[1, p. 35])$. In this case, we have $\langle \varphi, \delta^*\theta \rangle = \langle \delta \varphi, \theta \rangle$ for any $\varphi \in C^\infty(S^2M)$ and $\theta \in C^\infty(T^*M)$.

The following York theorem [2] is a well-known result in Riemannian geometry in the large and it is also included in the monographs (see, e.g., [1, p. 130]).

Theorem 1. For any n-dimensional $(n \ge 3)$ compact Riemannian manifold (M, g) the decomposition

$$C^{\infty}(S^2M) = \left(\operatorname{Im}\delta^* + C^{\infty}M \cdot g\right) \oplus \left(\delta^{-1}(0) \cap \operatorname{trace}_g^{-1}(0)\right) \ (1)$$

holds, where both factors are infinite dimensional and orthogonal to each other with respect to the L^2 inner scalar product.

Remark. The second factor $\delta^{-1}(0) \cap trace_g^{-1}(0)$ of (1) is the space of TT-tensors on (M, g). At the same time, we recall that a symmetric divergence free and traceless covariant two-tensor is called TT-tensor (see, for instance, [3]).

If we suppose $\varphi \in C^{\infty}(S^2M)$, then York L^2 -orthogonal decomposition formula (1) can be rewritten in the form

$$\varphi = \left(\frac{1}{2}L_{\xi}g + \lambda g\right) + \varphi^{TT} \tag{2}$$

for some $\xi \in C^{\infty}(TM)$, some TT-tensor φ^{TT} and some scalar function $\lambda \in C^{\infty}(M)$. Applying the operator $trace_g$ to both sides of (2), we obtain $trace_g \varphi = -\delta \theta + n\lambda$, where θ is the g-dual one-form of ξ that means $\theta^{\#} = \xi$ (see [1, p. 30]). In this case, (2) can be rewritten in the form $\mathring{\varphi} = S\theta + \varphi^{TT}$, where

$$\overset{\circ}{\varphi} = \varphi - (1/n)(trace_a \varphi)g$$

is the traceless part of φ and

$$S\theta := \delta^*\theta + (1/n)\delta\theta g$$

denotes the Cauchy — Ahlfors operator $S: C^{\infty}(T^*M) \to C^{\infty}(S_0^2M)$ actions on the vector space of one-form $C^{\infty}(T^*M)$ and with values in the vector space $C^{\infty}(S_0^2M)$ of symmetric traceless bilinear differential forms (see, e.g., [4]). It's obvious that S annihilates the one-form θ such that $\theta^{\#} = \xi$ for a *conformal Killing vector* ξ on (M,g), since the conformal Killing vector ξ obeys the equation $\delta^*\theta = -(1/n)\delta\theta \cdot g$ (see [5]). Particular cases of a conformal Killing vector field ξ is a homothetic vector for which $\delta\theta = const$ and a Killing vector, for which $\delta\theta = 0$ (see [5]). Using the above, we can formulate the following corollary.

Corollary 1. For any n-dimensional $(n \ge 3)$ compact Riemannian manifold (M, g) the decomposition

$$C^{\infty}(S_0^2M) = \operatorname{Im}S \oplus \left(\delta^{-1}(0) \cap \operatorname{trace}_g^{-1}(0)\right) \tag{3}$$

holds, where both terms on the right-hand side of (3) are L^2 -orthogonal to each other.

From the L^2 -orthogonal decomposition (3) we deduce the L^2 -orthogonal decomposition for the traceless Ricci tensor

$$\overset{\circ}{Ric} = S\theta + Ric^{TT} \tag{4}$$

for some one-form $\theta \in C^{\infty}(T^*M)$, some TT-tensor $Ric^{TT} \in C^{\infty}(S^2M)$ and the Cauchy — Ahlfors operator S. Therefore, we can formulate the following corollary.

Corollary 2. Let Ric be the traceless Ricci tensor of an n-dimensional $(n \ge 3)$ compact Riemannian manifold (M,g). Then the L^2 -orthogonal decomposition $\mathring{Ric} = S\theta + Ric^{TT}$ holds for its traceless Ricci tensor \mathring{Ric} .

The formal adjoint operator for S is defined by the formula $S^*\omega = 2\delta\omega$ for an arbitrary $\omega \in C^\infty(S_0^2M)$ (see [4]). Then the elliptic operator of the second kind $S^*S:C^\infty(T^*M)\to C^\infty(T^*M)$ is well known as the *Ahlfors Laplacian* (see also [4]). Note that $kerS^*S = kerS$ since $\langle S^*S\theta, \theta \rangle = \langle S\theta, S\theta \rangle$ for any $\theta \in C^\infty(T^*M)$. Furthermore, the following equation holds (see [6])

$$S^*S\theta = - (n-2)/n \cdot ds.$$

Therefore, in general, the scalar curvatures s of (M, g) is constant if and only if the vector field $\xi := \theta^{\#}$ is conformal Killing.In addition, we recall that the kernel of S is trivial if the Ric is quasinegative (see [5]). Recall that Ric is quasi-negative means that Ric is non-positive everywhere but strictly negative somewhere. The following theorem holds.

Theorem 2. Let (M,g) be an n-dimensional $(n \ge 3)$ compact Riemannian manifold and $Ric = \left(\frac{1}{2}L_{\xi}g + \lambda g\right) + Ric^{TT}$ be the

York L^2 -decomposition of its Ricci tensor Ric. Then the scalar curvature s of (M,g) is constant if and only if the vector field ξ is conformal Killing. In particular, if the Ricci tensor Ric of (M,g) is quasi-negative, then the scalar curvature s of (M,g) is constant if and only if the vector field ξ is zero.

3. The York decomposition and Einstein manifolds

Let (M, g) be an n-dimensional $(n \ge 3)$ compact Einstein manifold such that $Ric = \lambda g$. Then from (4) the equality follows $S\theta + Ric^{TT} = 0$. Therefore, if we applying the operator δ to both sides of the equality $S\theta + Ric^{TT} = 0$, we obtain $S^*S\theta = 0$. As a result from $S\theta + Ric^{TT} = 0$ we deduce that $S\theta = 0$ and $Ric^{TT} = 0$. The opposite is obvious. Using the above, in particular, Theorem 2, we can formulate the following theorem.

Theorem 3. Let (M, g) be an n-dimensional $(n \ge 3)$ compact Riemannian manifold and

$$Ric = \left(\frac{1}{2}L_{\xi}g + \lambda g\right) + Ric^{TT}$$

be the York L^2 -decomposition of its Ricci tensor Ric. Then (M,g) is an Einstein manifold if and only if the vector field ξ is conformal Killing and the TT-tensor Ric^{TT} is zero. In particular, if the Ricci tensor Ric of (M,g) is quasi-negative, then (M,g) is an Einstein manifold if and only if the vector field ξ must also be zero as must Ric^{TT}.

According to Theorem 3, we conclude that the definition of an n-dimensional ($n \ge 3$) compact Einstein manifold (M,g) is related to the existence (in general) of a non-zero conformal Killing vector field on (M,g). At the same time, the theorem of Yano and Nagano [7] states that an n-dimensional simply connected complete Riemannian manifold (M,g) of positive constant curvature is the only connected complete Einstein manifold admitting a complete conformal vector field ξ which is non-homothetic. Furthermore, (M,g) is conformally diffeomorphic with an n-dimensional

Euclidian sphere S^n . At the same time, we recall that H. Hopf showed that a compact, simply connected Riemannian manifold with constant sectional curvature 1 is necessarily isometric to the Euclidian sphere S^n , equipped with its standard metric (see [8; 9]). Therefore, in the Yano and Nagano theorem, (M, g) must be isometric with the Euclidian sphere S^n if the vector field ξ has a non-constant divergence (see also [5, p. 5]). Using our Theorem 2 and the theorem of Yano and Nagano we can formulate a corollary.

Corollary 3. Let (M,g) be an n-dimensional $(n \ge 3)$ simply connected compact Riemannian manifold and let $Ric = \left(\frac{1}{2}L_{\xi}g + \lambda g\right) + Ric^{TT}$ be the York L^2 -decomposition of its Ricci tensor, where the vector field ξ has a non-constant divergence. If (M,g) is an Einstein manifold, then it is isometric with an n-dimensional Euclidian sphere S^n .

Remark. An *n*-dimensional $(n \ge 2)$ Riemannian manifold (M, g) is a Ricci almost soliton if and only if the identity $Ric^{TT} = 0$ holds in the orthogonal decomposition of the Ricci tensor (4) (see [6]).

References

- 1. Besse, A.L.: Einstein manifolds, Springer-Verlag, Berlin & Heidelberg (2008).
- 2. York, J. W.: Covariant decompositions of symmetric tensors in the theory of gravitation. Ann. Inst. H. Poincaré Sect. A (N. S.), **21**:4, 319—332 (1974).
- 3. *Gicquaud, R., Ngo, Q.A.:* A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small *TT*-tensor. Class. Quant. Grav. **31**:19, 195014 (2014).
- 4. *Branson, T.*: Stein Weiss operators and ellipticity. Journal of Functional, 151, 334—383 (1997).
- 5. *Rademacher*, *H.-B.*: Einstein spaces with a conformal group, Res. Math., **56**:1, 421—444 (2009).
- 6. Stepanov, S. E., Tsyganok, I.I., Mikeš, J.: New applications of the Ahlfors Laplacian: Ricci almost solitons and general relativistic constraint equations in vacuum. Journal of Geometry and Physics, 209, 105414 (2025).

- 7. Yano, K., Nagano, T.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math., **69**:2 451—461 (1959).
- 8. *Hopf, H.:* Zum Clifford Kleinschen Raumproblem. Math. Ann., 95, 313—339 (1926)
- 9. *Hopf, H.*: Differential geometrie und topologische Gestalt, Jahresber. Deutsch. Math.-Verein., 41, 209—229 (1932).

For citation: Alexandrova, I. A., Stepanov, S. E.: A note on the scalar curvature of a compact Riemannian manifold. DGMF, 56, 12—19 (2025). https://doi.org/10.5922/0321-4796-2025-56-2.

SUBMITTED FOR POSSIBLE OPEN ACCESS PUBLICATION UNDER THE TERMS AND CONDITIONS OF THE CREATIVE COMMONS ATTRIBUTION (CC BY) LICENSE (HTTP://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)

УДК 514.764.22

И. А. Алексан∂рова, С. Е. Степанов Финансовый университет при Правительстве РФ, Москва, Россия s.e.stepanov@mail.ru doi: 10.5922/0321-4796-2025-56-2

Заметка о скалярной кривизне компактного риманова многообразия

Поступила в редакцию 04.02.2025 г.

В данной статье формулируются необходимые и достаточные условия постоянства скалярной кривизны п-мерного ($n \ge 3$) компактного риманова многообразия (M,g). В частности, найдены условия постоянства скалярной кривизны компактного риманова многообразия в случае квазиотрицательного тензора Риччи. Также получены условия того, что компактное риманово многообразие (M,g) является многообразием Эйнштейна.

Ключевые слова: компактное риманово многообразие, скалярная кривизна, разложение Йорка, многообразие Эйнштейна

Список литературы

- 1. Бессе А. Многообразия Эйнштейна. М., 1990.
- 2. York J. W. Covariant decompositions of symmetric tensors in the theory of gravitation // Ann. Inst. H. Poincaré Sect. A (N.S.), 1976. Vol. 21, № 4. P. 319—332.
- 3. Gicquaud R., Ngo Q.A. A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor // Class. Quant. Grav. 2014. Vol. 31, No 19. Art. No 195014.
- 4. *Branson T.* Stein-Weiss operators and ellipticity // Journal of Functional. 1997. Vol. 151. P. 334—383.
- 5. *Rademacher H.-B*. Einstein spaces with a conformal group // Res. Math. 2009. Vol. 56, № 1. P. 421—444.
- 6. Stepanov S. E., Tsyganok I. I., Mikeš J. New applications of the Ahlfors Laplacian: Ricci almost solitons and general relativistic constraint equations in vacuum // Journal of Geometry and Physics. 2025. Vol. 209. Art. № 105414.
- 7. Yano K., Nagano T. Einstein spaces admitting a one-parameter group of conformal transformations // Ann. Math. 1959. Vol. 69, №2. P. 451—461.
- 8. *Hopf H*. Zum Clifford Kleinschen Raumproblem // Math. Ann. 1926. Vol. 95. P. 313—339.
- 9. *Hopf H*. Differentialgeometrie und topologische Gestalt, Jahresber // Deutsch. Math.-Verein. 1932. Vol. 41. P. 209—229.

Для цитирования: *Александрова И. А., Степанов С. Е.* Заметка о скалярной кривизне компактного риманова многообразия // ДГМФ. 2025. № 56. С. 12—19. https://doi.org/10.5922/0321-4796-2025-56-2.