УДК 514.764.25

Т.В. Зудина, С.Е. Степанов

(Владимирский государственный педагогический университет)

ОБ ОДНОМ КЛАССЕ ЭКВИАФФИННЫХ ОТОБРАЖЕНИЙ

Пусть M будет дифференцируемым п-мерным многообразием с эквиаффинной $SL(n, \mathbf{R})$ -структурой, которая определяется как пара (ω, ∇) , где ω — элемент объема $SL(n, \mathbf{R})$ -структуры и ∇ — линейная связность без кручения такие, что $\nabla \omega = 0$. Диффеоморфизм $f: M \to \overline{M}$ многообразий M и \overline{M} размерностей \mathbf{R} с эквиаффинными $SL(n, \mathbf{R})$ -структурами (ω, ∇) и $(\overline{\omega}, \overline{\nabla})$ назван эквиаффинным, если $f^*\overline{\omega}$ принадлежит $SL(n, \mathbf{R})$ -структуре многообразия M. Эквиаффинный диффеоморфизм $f: M \to \overline{M}$ характеризуется равенством $trace(\overline{\nabla} - \nabla) = 0$. Ниже описана геометрия одного из семи найденных ранее классов эквиаффинных отображений.

Введение

 $SL(n, \mathbf{R})$ -структуры в списке классических G-структур на n-мерных многообразиях стоят сразу после естественно определяемых $GL(n, \mathbf{R})$ -структур [1, с. 12—13]. Известно, что каждая $SL(n, \mathbf{R})$ -структура задает на n-мерном связном многообразии M однозначно с точностью до постоянного множителя C нигде не обращающуюся в нуль n-форму $\omega \in C^{\infty}\Lambda^n M$, и обратно, каждой n-форме $\omega \in C^{\infty}\Lambda^n M$ соответствует однозначно

определенная $SL(n, \mathbf{R})$ -структура [2, с. 196]. На этом основании нигде на M не обращающуюся в нуль n-форму $\omega \in C^{\infty}\Lambda^n M$ называют еще $SL(n, \mathbf{R})$ -структурой [1, с. 36].

Известна проблема сопоставления с каждой G-структурой, заданной на многообразии M, однозначно определенной сводимой к G линейной связности ∇ (см. [3]). Линейная связность без кручения ∇ , сводимая к $SL(n, \mathbf{R})$, называется эквиаффинной и характеризуется условием $\nabla \omega = 0$. Пару (∇, ω) назовем эквиаффинной $SL(n, \mathbf{R})$ -структурой на многообразии M, а геометрию многообразия M с эквиаффинной структурой по предложению К. Номидзу — аффинной дифференциальной геометрией [4; 5].

В настоящей статье мы продолжим начатое в работах [6] и [7] изучение геометрии эквиаффинных отображений многообразий.

§ 1. Эквиаффинные отображения

Пусть имеются два n-мерных связных многообразия M и M' с эквиаффинными $SL(n, \mathbf{R})$ -структурами (∇, ω) и (∇', ω') соответственно. Тогда диффеоморфизм $f: M \to M'$ назовем эквиаффинным отображением, если n-форма $f^*(\omega')$ принадлежит $SL(n, \mathbf{R})$ -структуре многообразия M, т.е. $f^*(\omega') = C\omega$ для постоянной C > 0. Последнее, как нетрудно установить, выполняется тогда и только тогда, когда тензор деформации $T = \nabla' - \nabla$ связности ∇ в связность ∇' удовлетворяет условию trace T = 0. В частности, эквиаффинные отображения включают в себя эквиобъемные отображения $f: M \to M'$ многообразий с $SL(n, \mathbf{R})$ -структурами, для которых согласно определению $\omega = f^*(\omega')$.

Тензор деформации T произвольного диффеоморфизма $f: M \to M'$ многообразий с эквиаффинными $SL(n, \mathbf{R})$ -структурами (∇, ω) и (∇', ω') соответственно допускает $GL(n, \mathbf{R})$ -инвариантное разложение вида

$$T = W + \frac{1}{n+1} (trace T \otimes Id_M + Id_M \otimes trace T)$$

с «бесследовой» вейлевой компонентой разложения W и «следовой» компонентой $T'=\frac{1}{n+1} \left(trace T\otimes Id_M+Id_M\otimes trace T\right)$, которая совпадает с тензором деформации связностей при проективном отображении [8, с. 166]. В результате диффеоморфизм $f:M\to M'$ представим в виде композиции эквиаффинного отображения $f'':M\to M''$ на некоторое n-мерное многообразие M'' с эквиаффинной $SL(n,\mathbf{R})$ -структурой $\left(\nabla'',\omega''\right)$ для формы объема $\omega''=C'''\omega$ с постоянной C''>0 и эквиаффинной связностью $\nabla''=\nabla+W$ и проективного отображения $f':M''\to M'$, где, как нетрудно установить, $\nabla'=\nabla''+T'$ и $traceT'=grad[ln\,\omega'/\omega]$.

В случае эквиаффинного отображения $f:M\to M'$ многообразий с эквиаффинными $SL(n,\mathbf{R})$ -структурами (∇,ω) и (∇',ω') соответственно для произвольного векторного поля X на M и поля $X'=f_*X$ на M' справедливо равенство $div\ X=div\ X'$. Действительно, непосредственные вычисления показывают, что $trace(\nabla'X')=trace(\nabla X)+(trace\ T)X$, $div\ X=trace(\nabla X)$ и $div\ X'=trace(\nabla'X')$ в случае эквиаффинных связностей ∇ и ∇' [9, с. 259]. А благодаря теореме Грина $\int_M (div\ X)\omega=0$, справедливой $\int_M (div\ X)\omega=0$, структурой (∇,ω) [9, с. 260], в качестве следствия имеем равенство $\int_M (div\ X)\omega=\int_{M'} [div(f_*X)]\omega'$.

§ 2. Субгеодезические эквиаффинные отображения

В случае эквиаффинного отображения $f:(M,g)\to (M',g')$ псевдоримановых многообразий тензорное поле T^* , определяемое для $X,Y,Z\in C^\infty TM$ условием $T^*(X,Y,Z)=g(X,T(Y,Z)),$

допускает поточечно неприводимое разложение на три компоненты. Вследствие этого можно инвариантным образом выделить семь классов такого рода отображений [7], как это было сделано в случае с гармоническими диффеоморфизмами [10].

Рассмотрим эквиаффинное отображение $f:(M,g) \to (M,\overline{g})$ одного из семи выделенных в работе [7] классов, которое в локальных координатах принимает вид следующих равенств:

$$T_{ij}^{k} = \frac{1}{n^{2} + n - 2} \Big[(n+1)\theta^{k} g_{ij} - \theta_{i} \delta_{j}^{k} - \theta_{j} \delta_{i}^{k} \Big]. \tag{*}$$

Непосредственно проверяется здесь, что traceT = 0 и при этом тензор g по отношению к связности Леви-Чивита ∇' является обобщенно киллинговым и обобщенно кодациевым одновременно [8, с. 176, 186].

Для того чтобы еще как-то охарактеризовать подобного вида эквиаффинное отображение, напомним некоторые понятия. Рассмотрим гладкую кривую $\gamma \subset M$ и обозначим через $\dot{\gamma}$ ее касательное векторное поле. Кривая $\gamma \subset M$ называется субпланарной [11], если для каждой точки $x \in \gamma$ ее касательный вектор $\dot{\gamma}_x$ при параллельном перенесении его вдоль кривой в точку кривой x' = x + dx окажется в 2-мерном подпространстве из $T_{\mathbf{x}'}M$, натянутом на $\dot{\gamma}_{\mathbf{x}'}$ и некоторый вектор $\xi_{\mathbf{x}'}$, т.е. $\left(\nabla_{\dot{\gamma}}\dot{\gamma}\right)_{x'}=\lambda(x')\dot{\gamma}_{x'}+\mu(x')\xi_{x'}$ для гладких функций λ и μ , заданных в точках кривой $\gamma \subset M$. Диффеоморфное отображение $f:(M,g)\to (\overline{M},\overline{g})$ называют субгеодезическим [12], если любая субпланарная кривая из (M,g) при таком отображении перейдет в субпланарную кривую из $(\overline{M}, \overline{g})$. Это возможно тогда и только тогда [11], когда в общей по отображению системе координат x^1, \dots, x^n выполняются равенства $\overline{\Gamma}_{ij}^k = \Gamma_{ij}^k + \delta_i^k \varphi_j + \delta_j^k \varphi_i + \xi^k a_{ij}$ для некоторых ковекторного поля φ с локальными компонентами φ_i и симметрического тензорного поля a с локальными компонентами a_{ij} . Заключаем, что эквиобъемное отображение класса (*) является субгеодезическим отображением.

Более того, эквиаффинное отображение $f:(M,g) \to (\overline{M},\overline{g})$ переводит изотропные геодезические из (M,g) в геодезические из $(\overline{M},\overline{g})$, т.е. в общей по отображению системе координат из условий $\nabla_{\dot{\gamma}}\dot{\gamma}=\lambda\ \dot{\gamma}$ и $g(\dot{\gamma},\ \dot{\gamma})=0$ с необходимостью следует, что $\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}=\overline{\lambda}\ \dot{\gamma}$. Действительно, для произвольной изотропной геодезической $\gamma\subset M$ с учетом равенств (*) имеем $\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}=\left(\lambda-\frac{2}{n^2+n-2}\theta(\dot{\gamma})\right)\dot{\gamma}$.

Теорема. Эквиаффинное отображение $f:(M,g) \to (\overline{M},\overline{g})$ класса (*) псевдориманова многообразия (M,g) на некоторое псевдориманово многообразие $(\overline{M},\overline{g})$ является субгеодезическим отображением, переводящим изотропные геодезические многообразия (M,g) в геодезические многообразия $(\overline{M},\overline{g})$.

В статье [12] для случая, когда $a_{ij} = g_{ij}$ в (*), указан канонический вид, к которому можно привести метрические формы $ds^2 = g_{ij} dx^i \otimes dx^j$ и $d\overline{s}^2 = \overline{g}_{ij} dx^i \otimes dx^j$ римановых многообразий (M, g) и $(\overline{M}, \overline{g})$ при условии, что среди корней уравнения $det(\overline{g}_{ij} - r^2 g_{ij}) = 0$ имеется n различных. Точнее: если на открытом всюду плотном подмножестве $M_{\overline{g}} \subset M$ число различных собственных значений оператора $G_i^k = g^{kj} \overline{g}_{ji}$ постоянно и равно n, то метрические формы многообразий (M, g) и $(\overline{M}, \overline{g})$ в общей по отношению к данному отображению $f:(M,g) \rightarrow (\overline{M},\overline{g})$ системе локальных координат x^1,\dots,x^n приводятся к виду

$$ds^2 = e^{2\xi(x^1,\dots,x^n)} \Big\{ a_1\big(x^1\big)z'\big(x^1\big) \big(dx^1\big)^2 + \dots + a_n\big(x^n\big)z'\big(x^n\big) \big(dx^n\big)^2 \Big\} \,;$$

$$d\overline{s}^2 = \Big(x^1...x^n\big)^{-1} \, \Big\{ a_1\big(x^1\big)z'\big(x^1\big) \big/ \big(x^1\big) \Big\} \big(dx^1\big)^2 + \dots + \Big[a_n\big(x^n\big)z'\big(x^n\big) \big/ \big(x^n\big) \Big] \big(dx^n\big)^2 \Big\},$$
 где $\xi_i = \partial_i \xi$; $(n+1)\partial_i + \xi_i = 2^{-1}\partial_i \big(\ln(\det \overline{g}/\det g)\big)$ и $z(x) = (x-x^1)\dots(x-x^n)$. В итоге будет справедливым

Следствие. Пусть $f:(M,g) \to (\overline{M},\overline{g})$ — эквиобъемное отображение класса \mathfrak{T}_3 риманова многообразия (M,g) на риманово многообразие $(\overline{M},\overline{g})$ и тензор \overline{g} на связной компоненте множества $M_{\overline{g}} \subset M$ обладает п различными собственными функциями. Тогда метрические формы $ds^2 = g_{ij} dx^i \otimes dx^j$ и $d\overline{s}^2 = \overline{g}_{ij} dx^i \otimes dx^j$ многообразий данных многообразий в общей по отношению к отображению $f:(M,g) \to (\overline{M},\overline{g})$ системе локальных координат x^1,\ldots,x^n приводятся к виду

$$\begin{split} ds^2 &= e^{2\theta(x^1,\dots,x^n)} \Big\{ a_1\big(x^1\big) z'\big(x^1\big) \big(dx^1\big)^2 + \dots + a_n\big(x^n\big) z'\big(x^n\big) \big(dx^n\big)^2 \Big\}; \\ d\overline{s}^2 &= \big(x^1,\dots x^n\big)^{-1} \Big\{ a_1\big(x^1\big) z'\big(x^1\big) / \big(x^1\big) \Big\} \big(dx^1\big)^2 + \dots + \Big[a_n\big(x^n\big) z'\big(x^n\big) / \big(x^n\big) \Big] \big(dx^n\big)^2 \Big\}, \\ \text{ГДе} \quad & \xi_i &= \partial_i \xi \quad ; \quad (n+1)\theta_i + \xi_i = 2^{-1} \partial_i \big(\ln \big(\det \overline{g}/\det g\big)\big) \quad \text{M} \quad z(x) = \\ &= \big(x-x^1\big) \dots \big(x-x^n\big). \end{split}$$

Список литературы

- 1. Кобаяси Ш. Группы преобразований в дифференциальной геометрии. М., 1986.
- 2. Зуланке P., Винтген Π . Дифференциальная геометрия и расслоения. М., 1975.
- 3. *Chern S.S.* The geometry of G-structures // Bull. Amer. Math. Soc. 1966. Vol. 72. P. 167—219.
- 4. Nomizu K., Sasaki T. Affine differential geometry. Cambridge, 1994.

- 5. *Nomizu K*. On completeness in affine differential geometry // Geometriae Dedicata. 1986. Vol. 20. № 1. P. 43—49.
- 6. Зудина Т.В., Степанов С.Е. Эквиаффинные отображения псевдоримановых многообразий // Диф. геом. многооб. фигур. Калининград, 2004. Вып. 35. С. 48—55.
- 7. Stepanov S.E., The seven classes of equiaffine mappings of pseudo-Riemannian manifolds // Abstracts of 9th International Conference on Differential Geometry and Applications. Prague, 2004. P. 46—47.
- 8. *Норден А.П.* Пространства аффинной связности. М., 1976.
- 9. *Кобаяси Ш., Номидзу К.* Основы дифференциальной геометрии. М., 1981. Т. 1.
- 10. Степанов С.Е., Шандра И.Г. Семь классов гармонических диффеоморфизмов // Математические заметки. 2003. Т. 74. Вып. 5. С. 752—761.
- 11. *Yano K*. Union curves and subpaths // Math. J. 1948. Vol. 1. P. 51—59.
- 12. *Nicolescu Liviu*. Les espaces de Riemann en representation subgeodesique // Tensor, N.S. 1978. Vol. 32. № 2. P. 182—187.

T. Zudina, S. Stepanov

ON A CLASS OF EQUIAFFINE MAPS

Let M be a differentiable manifold with an equiaffine $SL(n, \mathbf{R})$ -structure that is a pair (ω, ∇) where ω is a volume element of $SL(n, \mathbf{R})$ -structure and ∇ is a linear connection with zero torsion such that $\nabla \omega = 0$. The diffeomorphism $f: M \to \overline{M}$ between two manifolds M and \overline{M} of dimension n with equiaffine $SL(n, \mathbf{R})$ -structures is said to be equiaffine if $f^*\overline{\omega}$ belongs to $SL(n, \mathbf{R})$ -structure of M. It turns out that f is equiaffine if and only if $trace(\overline{\nabla} - \nabla) = 0$. We have given several examples and applications of these definition and result.