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York decompositions for the Codazzi,
Killing and Ricci tensors

The York decomposition of the space of symmetric two-ten-
sors originated in theoretical physics and has found applications in
Riemannian geometry, as illustrated by its use in Besse’s famous
monograph on FEinstein manifolds. In this paper, we derive York
decompositions for Codazzi, Killing and Rucci tensors on a closed
Riemannian manifold. In particular, we derive the York decom-
positions for the Codazzi, Killing and Ricci tensors with constant
trace.
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1. Introduction

In the present paper we consider a closed (i.e., compact and
without boundary) Riemannian manifold (M, g) of dimension
n > 2. We denote by SPM: = SPT*M the vector bundle of covar-
iant symmetric p-tensors (p = 1) on (M, g) and define the L?
global scalar product of two covariant symmetric p-tensors ¢ and
¢' on (M, g) by the formula

(p,9") = f g (¢, 9")dvoly < +o
M
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where dvoly is the volume element of (M, g). Also 6*: C*(TM) -
— C*®(8?M) will be the first-order differential operator defined by
the formula §*6: = %ng for some smooth vector field ¢ and it’s

g-dual one-form O(see [1, p. 117, 514]). At the same time, we de-
note by the formula §: C*(S2M) - C*(TM) the formal adjoint
operator for §* which is called the divergence of symmetric two-
tensors. In this case, we have (@, 8"0) = (6¢,0) for any ¢ €
€ C®(S2M) and 0 € C*(T*M).

We recall, that ¢ € C®(52M) is called the Codazzi tensor if it
satisfies the differential equation (see [1, p. 434; 2, p. 350])

(Vxp)(Y,Z2) = (Vyp) (X, Z) (1)
for arbitrary X,Y,Z € TM. Such tensors arise naturally in the study
of Riemannian manifolds with harmonic curvature or harmonic
Weyl tensor (see [1, p. 435]). For example, any Codazzi tensor ¢
on (M, g) with constant curvature C has the local expression (see
[1, p. 436])

¢ =Hess(f) +C - f-g
for the C? — function f on (M, g).

Let us also recall that a symmetric, divergence-free and tra-
celess covariant two-tensor is called a T7-tensor (see, for instance,
[3]). Any TT-tensor is denoted by @7 (see [3]). In this case, @77
satisfies the equations trace,'" = 0 and § " = 0. As a conse-
quence of a result of Bourguignon — Ebin — Marsden (see [1,
p. 132] and [4]) the space of TT-tensors is an infinite-dimensional
R-vector space on any closed Riemannian manifold (M, g). Such
tensors are of fundamental importance in stability analysis in Ge-
neral Relativity (see, for instance, [5; 7]) and in Riemannian geo-
metry (see, e.g., [1, p. 346—347; 4; 8]).

Now, we are ready to formulate our first result.

Theorem 1. Let (M, g) be an n-dimensional (n = 3) closed
Riemannian manifold. Then any Codazzi tensor ¢ € C®(S*M) has
the L?-orthogonal decomposition
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1
9= (GLeg+2g)+o™ @)
for some vector field & € C®(TM), some TT-tensor @T' €
€ C®(S%2M) and some scalar function A € C*(M). Furthermore,
if the inequality fMLg(traceggo) dvoly = 0 holds, then this de-
composition can be rewritten as

1
Q= ;(traceg(p)g + ™7, 3)

Moreover, if traceq@ = const, then @™ is also a Codazzi tensor.

Remark. Our theorem generalizes the result of Simons (see
Theorem 5.4.1 and Theorem 5.4.2 from [9]): If ¢ is a traceless Co-
dazzi tensor on a closed Riemannian manifold (M, g), then
@ = A g+ H, where A is a constant and H is another traceless Co-
dazzi tensor.

We recall, that ¢ € C®°(S?M) is called the Killing tensor if it
satisfies the differential equation (see, for instance, [10])

Vx@)(Y,2) + (Vy@)(Z,X) + (Vz)(X,Y) =0 (4)
for arbitrary X,Y,Z € TM. In mathematics, a Killing tensor is a
generalization of a Killing vector, for symmetric tensor fields. It is
a concept in Riemannian and pseudo-Riemannian geometry, and is
mainly used in the theory of general relativity. For example, if
(M, g) is a Riemannian manifold of constant curvature, then any
Killing tensorg on (M, g) has the local expression (see [11; 12])

(pij = ez“’(Aijkl xkxl + Bijkxl + CU)
for w = (n + 1)"!In(det g) with respect to a local coordinate sys-
tem{x?, ..., x"}of(M, g). The coefficients A;jy;, Bijx. and C;; are
constant and symmetric with respect to the first two subscripts and

Aijri + Ajkir + Akiji = 0;Byji + Bjyi + Brij = 0

fori,j,k,l=1,..,n
Now, we are ready to formulate our second result.
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Theorem 2. Let (M, g) be an n-dimensional (n = 3) closed
Riemannian manifold. Then any Killing tensor ¢ € C®(S?M) has
the L?-orthogonal decomposition

1
o ey b ) TT
P (2 gtag|t+o

for some vector field § € C®(TM), someTT-tensor T € C®(S*M)
and some scalar function A € C*(M). Furthermore, if the equality
) wle (traceg(p)dvolg < 0 holds, then this decomposition can be
rewritten as.

1
Q= ;(traceg(p)g + T, Q)

Moreover, if trace g = const, then ™" is also a Killing tensor.

The Ricci tensor Ricis an important mathematical object used in
differential geometry, and it also appears frequently in general relativi-

ty (see [1]). It has the local expression Ric = (s/n) g + Ric, where
Ric is its traceless part. Our next theorem is especially important.
Theorem 3. Let (M, g) be an n-dimensional (n > 3) closed

Riemannian manifold. Then the traceless part Ric of the Ricci ten-
sor Ric of (M, g) has the L*-orthogonal decomposition

Ric = SO + ¢™T
for the Cauchy — Ahlfors operator S6, some one-form 6 € C*(T*M)
and some TT-tensor TT € C®°(S2M). Furthermore, if the inequa-
lity fM (Lsc s ) dvolg = 0 holds, then this decomposition can be
rewritten as

Ric = nlsg + ™7,
where s is constant.
2. Proofs of theorems

For any n-dimensional (n > 3) closed Riemannian manifold
(M, g), the algebraic sum Imé&* + C®(M) - g is closed in S?M,
and we have the York decomposition (see [6; 7, p. 24—25])
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S2M = (Im&* + C°M - g) ® (5-1(0) n trace;l(o)) (6)

where both factors on the right side are infinite-dimensional and
orthogonal to each other with respect to the L? global scalar prod-
uct (see [1, p. 130]). It's obvious that the second factor §-1(0) N
trace;l(O) of (6) is the space of T7-tensors. Therefore, in particu-

lar, we have the L?orthogonal decomposition (2) for any Codazzi
and Killing tensors, respectively.

Let us consider equation (4) of a symmetric Killing tensor ¢.
From (4) we obtain

o= % d(tracegtp). @)
At the same time, from (5) we can conclude that trace,¢ =

=660 +nl, where § § = —div & for % = &. In this case, if (p
denotes the traceless part of ¢, then

0+ (50—n2) —(1L NEPY) )+ T
o=¢+- nl)g = (Leg +-564)+9

and hence

@ =250 + @7, (8)
where S8 = Lgg +2/n 6 6 g is the Cauchy — Ahlfors operator.
Next, applying § to both sides of (8), we obtain

5@ = S5S6, )

for the Ahlfors Laplacian S*S for S* = 2§ (see details in [13]).
Using (7), equation (9) can be rewritten in the form

° 42
Sp = W d(traceg(p). (10)

From (9) and (10) we deduce the following integral formula
(56,56) = fMLg(traceg(p)dvolg. (11)

If we assume that fMLg(traceggo)dvolg <0, then from (11)
we obtain that S6 = 0 and fMLf(traceggo)dvolg = 0. In this ca-

n+2
n
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se, we have @ = @7 and hence (5) holds. Furthermore, it is ob-
vious if trace,¢ = const, then @7 is also a Killing tensor. Theo-
rem 2 is proven.

Next, let us consider equation (1) of a Codazzi tensor ¢. From
(1) we obtain

Sp=— d(traceg(p).
In this case equation (10) has the form
n—1

5(2) = — d(tracequ).

n
In turn, the integral formula (11) can be rewritten in the form

n—1
(50,56) = —TfMLf(tracegw)dvolg.

If we assume that [, L¢(tracegp)dvoly >0, then from the
last formula we obtain that S8 = 0 and [ wle (tracegcp)dvolg = 0.

In this case, we have ¢ = @7 and hence (3) holds. Furthermore, it
is obvious if tracegp = const, then ™" is also a Codazzi tensor.
Theorem 1 is proven.

In conclusion, we consider the Ricci tensor Ric. As can be seen
from the well-known second Bianchi identity, one has

6 Ric = 1d
ic=—5ds.

where sis the scalar curvature, defined as s = tracegRic. In this
case (8) can be rewritten in the form

Ric = S6 + ¢'7
and hence
n—2
(50,50) = = ——/,(L¢ s )dvol,,

respectively. Therefore, if we assume that n >3 and
) M (Lg s )dvolg = 0, then from the last formula we obtain S8 = 0
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and | wle s dvoly = 0. Therefore, ¢ is a conformal Killing vector

. 1
field and Ric = —s g + ™", where s must be constant.
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Pasnoxenus Vopka ans TeH3opos
Kogauuu, Kunnuura n Puauu

IToctynuina B pegaxmuio 15.12.2024 r.

Pasnoxenne Mopka mpoCTpaHCTBA CHMMETPHUHBIX 2-TEH30-
POB BO3HHKJIO B TEOPETUYECKOH (M3MKE M HAILIO NPUMEHEHHE B
PUMaHOBOW T€OMETPHH, KaK 3TO MOKa3aHO B M3BECTHOIl MOHOTpa-
¢um becce o MHOTOOOpa3msix DiHmITEHA. B 3TO# CTaThe MBI BHI-
BOJMM pasnoxkenus Mopka mis temsopos Kopammmu, Kummunra u
Puyum Ha 3aMKHYTOM pUMaHOBOM MHOrooOpasmu. B wacTHOCTH,
MBI BHIBOJIUM paznoxkenus Mopka st 2-rensopos Komammm, Kuot-
nmHTra 1 Komamuy ¢ moCTOSITHHBIMU CIIEAaMH.

Kniouegvie cnosa: 3aMKHYTOE PUMaHOBO MHOTroo0Opasue, pas3ioKeHHe
Hopka, Ten3zop Konammm, Tenzop Kunnunra
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