КОМПЛЕКСЫ КОНИК В P_3 С ВЫРОЖДАЮЩИМСЯ ОСНАЩАЮЩИМ МНОГООБРАЗИЕМ

В. С. Малаховский

(Калининградский государственный университет)

В трехмерном проективном пространстве P_3 рассматривается трехпараметрическое семейство (комплекс) \mathbf{K} невырождающихся кривых второго порядка . С каждой коникой $\mathbf{C} \in \mathbf{K}$ инвариантно ассоциируется точка \mathbf{B} , не лежащая в плоскости коники [1] . Исследуются комплексы \mathbf{K} с вырождающимся в двумерную поверхность оснащающим многообразием (\mathbf{B}), описанным этими инвариантными точками .

1. Отнесём комплекс **K** реперу $\{\overline{A}_0$, \overline{A}_1 , \overline{A}_2 , $\overline{A}_3\}$, в котором вершины A_i (i,j,k=1,2,3) расположены в плоскости коники $\mathbf{C} \in \mathbf{K}$, а вершина A_0 - вне её . Тогда уравнения коники \mathbf{C} запишутся в виде :

$$a_{ii}x^ix^j = 0$$
 , $x^0 = 0$, (1.1)

причём коэффициенты a_{ij} симметричны по нижним индексам и пронормированы так , что

$$\det (a_{ij}) = 1$$
. (1.2)

Обозначим через a^{ij} приведённые миноры элементов a_{ij} матрицы (a_{ij}) . Тогда

$$a^{jk} a_{kj} = \delta_j^j . \tag{1.3}$$

Система уравнений Пфаффа комплекса ${f K}$ запишется в виде :

$$\theta_{ij} = b_{ij}^k \omega_k , \qquad (1.4)$$

где

$$\theta_{ij} \stackrel{\text{def}}{=} da_{ij} - a_{kj} \omega_i^k - a_{ik} \omega_j^k + \frac{2}{3} a_{ij} \omega_k^k , \ \omega_i \stackrel{\text{def}}{=} \omega_i^0 , \ b_{ij}^k = b_{ji}^k . \tag{1.5}$$

Дифференцируя (1.3), получим:

$$a^{ij} b_{ij}^{k} = 0.$$
 (1.6)

Система величин

$$b^{i} = a^{ik} b^{j}_{kj}$$
 (1.7)

образует квазитензор, так как

$$db^{i} = -b^{k}\omega_{k}^{i} + b^{i}\omega_{0}^{0} + \frac{10}{3}\omega_{0}^{i} + b^{ik}\omega_{k} . \qquad (1.8)$$

Он определяет в пространстве P_3 инвариантную точку

$$\overline{B} = -0.3 b^{i} \overline{A}_{i} + \overline{A}_{0}, \qquad (1.9)$$

не лежащую в плоскости коники.

Определение 1. Оснащающим многообразием комплекса ${\bf K}$ называется многообразие , описанное инвариантными точками ${\bf B}$.

Имеем:

$$d\overline{B} = \omega_0^0 \overline{B} + b^{ik} \omega_k \overline{A}_i . \qquad (1.10)$$

Обозначим:

$$\theta^{i} = b^{ik} \omega_{k}$$
, r=rang(b^{ij}). (1.11)

Если r=3 , то оснащающее многообразие (B) - трехмерная область пространства P_3 . Если же 0 < r < 3 , то оно вырождается в двумерную поверхность или линию .

2. Определение **2**. Комплексом K_2 называется комплекс **K** с двумерным оснащающим многообразием (B).

Совместим вершину A_0 репера с инвариантной точкой B, вершины A_1 и A_2 - с точками пересечения касательной плоскости α к поверхности (B) с коникой C, а вершину A_3 расположим в полюсе прямой $A_1 A_2$ относительно C. При такой канонизации исключается из рассмотрения случай , когда плоскость α касается коники C. Имеем

$$\overline{B} = \overline{A}_0$$
, $b^i = 0$, $a_{33} = -1$, $a_{12} = 1$, $a_{11} = a_{22} = a_{13} = a_{23} = 0$, $\theta^i = \omega_0^i$, (2.1)

$$\omega_0^3 = 0 , \ \omega_s^3 = c_{ss} \omega_0^{s} .$$
 (2.2)

Здесь и в дальнейшем \$,\$,\$=1,2; $\$\neq\$$ и по индексам \$,\$ суммирование не производится.

Система уравнений Пфаффа комплекса K_2 состоит из уравнений (2.2) и уравнений :

$$\begin{cases}
2\omega_{3}^{3} - \omega_{1}^{1} - \omega_{2}^{2} = 3b_{12}^{k}\omega_{k}, & \omega_{5}^{\$} = -\frac{1}{2}b_{\$}^{k}\omega_{k}, \\
\omega_{5}^{3} - \omega^{\$} = b_{\$3}^{k}\omega_{k}, & \omega_{0}^{\$} = m_{0}^{\$k}\omega_{k},
\end{cases} (2.3)$$

причём:

$$b_{33}^k = 2b_{12}^k , b_{ik}^k = 0 .$$
 (2.4)

Анализируя систему (2.2), (2.3) с учётом соотношений (2.4), убеждаемся, что она - в инволюции и определяет комплексы K_2 с произволом трёх функций трёх аргументов .

3. Общие точки двух смежных коник комплекса $\, {\rm K}_{\, 2} \,$ определяются системой уравнений :

$$2x^1x^2 - (x^3)^2 = 0$$
, $x^0 = 0$, $x^k\omega_k = 0$, $\phi^k\omega_k = 0$, (3.1)

где

$$\begin{cases} \phi^{\$} = b_{\$3}^{\$} x^{\$} x^{3} + b_{\$3}^{\$} x^{\$} x^{3} + 3b_{\$\$}^{\$} x^{\$} x^{\$} + \frac{1}{2} (b_{\$\$}^{\$} (x^{\$})^{2} + b_{\$\$}^{\$} (x^{\$})^{2}) ,\\ \phi^{3} = b_{13}^{3} x^{1} x^{3} + b_{23}^{3} x^{2} x^{3} + 3b_{12}^{3} x^{1} x^{2} + \frac{1}{2} (b_{11}^{3} (x^{1})^{2} + b_{22}^{3} (x^{2})^{2}) . \end{cases}$$
(3.2)

Всякая инвариантная неголономная конгруэнция коник $\mathbf{C} \in \mathbf{K}_2$ задаётся одним линейным однородным уравнением

$$\Omega \equiv a^k \omega_k = 0 , \qquad (3.3)$$

где Ω - относительно инвариантная форма ($\delta\Omega=\lambda\Omega$, δ - символ дифференцирования по вторичным параметрам) . Фокальные точки такой конгруэнции определяются системой :

$$2x^{1}x^{2} - (x^{3})^{2} = 0, \ x^{0} = 0, \ \begin{vmatrix} a^{1} & a^{2} & a^{3} \\ \phi^{1} & \phi^{2} & \phi^{3} \\ x^{1} & x^{2} & x^{3} \end{vmatrix} = 0.$$
 (3.4)

Так как репер $\{A_{\alpha}\}$ геометрически фиксирован , то формы Пфаффа ω_i , $\omega_0^{\$}$ - относительно инвариантные . Они определяют в общем случае пять неголономных конгруэнций , ассоциированных с комплексом K_2 .

Если

$$m^{12} = m^{13} = m^{21} = m^{23} = 0$$
, (3.5)

то неголономные конгруэнции $\omega_0^{\$}=0$ и $\omega_{\$}=0$ (\$=1,2) совпадают .Такие комплексы коник определяются с произволом восьми функций двух аргументов .

4. Основной трижды ковариантный тензор [1]

$$b_{ijk} = a_{h(i}b_{jk)}^{h} - \frac{2}{5}b_{(i}a_{jk)}$$
(4.1)

в силу (2.1) приводится к виду:

$$\begin{cases} b_{\$\$\$} = 3b_{\$\$}^{\$}, b_{333} = -3b_{33}^{3}, b_{\$\$\$} = 2b_{\$\$}^{\$} + b_{\$\$}^{\$}, \\ b_{\$33} = b_{33}^{\$} - 2b_{3\$}^{3}, b_{\$\$3} = 2b_{\$3}^{\$} - b_{\$\$}^{3}, b_{123} = b_{32}^{2} + b_{31}^{1} - b_{12}^{3}. \end{cases}$$

$$(4.2)$$

Ассоциированное **t**-фокальное многообразие коники $\mathbf{C} \in \mathbf{K}_2$ определяется системой уравнений

$$\begin{cases} 2x^1x^2 - (x^3)^2 = 0 \ , \ x^0 = 0 \ , \ 3b_{11}^2(x^1)^3 + 3b_{22}^1(x^2)^3 - 3b_{33}^1(x^3)^3 + \\ +2(2b_{12}^2 + b_{11}^1)(x^1)^2x^2 + 2(2b_{21}^1 + b_{22}^2)(x^2)^2x^1 + 2(b_{33}^2 - 2b_{31}^3)x^1(x^3)^2 + \\ +2(b_{33}^1 - 2b_{32}^3)x^2(x^3)^2 + (2b_{13}^2 - b_{11}^3)(x^1)^2x^3 + (2b_{23}^1 - b_{22}^3)(x^2)^2x^3 + \\ +3(b_{32}^2 + b_{31}^1 - b_{12}^3)x^1x^2x^3 = 0 \ . \end{cases}$$

Оно состоит в общем случае из шести ${\bf t}$ -фокальных точек коники ${\bf C}$. Каждая такая точка характерезуется тем , что она является фокусом неголономных конгруэнций коник , соответствующих всем точкам касательных к конике в точке M_+ [2] .

Условие $b_{11}^2=0$ ($b_{22}^1=0$) характеризует комплексы K_2 , в которых точка A_1 (A_2) является t-фокальной точкой коники ${\bf C}$.

5. Рассмотрим комплекс K_2 с неопределённым **t**-фокальным многообразием . Назовём его комплексом K_2^0 . Он характеризуется тождественным обращением в нуль основного трижды ковариантного тензора b_{ijk} , т.е. соотношениями :

$$\begin{cases} b_{\$}^{\$} = 0 , 2b_{\$}^{\$} + b_{\$}^{\$} = 0 , b_{33}^{\$} - 2b_{3\$}^{3} = 0 , \\ b_{33}^{3} = 0 , 2b_{\$3}^{\$} - b_{\$}^{3} = 0 , b_{31}^{1} + b_{32}^{2} - b_{12}^{3} = 0 . \end{cases}$$
(5.1)

Система уравнений (2.3) в силу (2.4) и (5.1) приводится к виду :

$$\begin{cases}
2\omega_{3}^{3} - \omega_{1}^{1} - \omega_{2}^{2} = 3b_{12}^{\$}\omega_{\$}, & \omega_{\$}^{\$} = b_{\$}^{\$}\omega_{\$} - b_{\$3}^{\$}\omega_{3}, \\
\omega_{\$}^{3} - \omega_{3}^{\$} = b_{\$3}^{\$}\omega_{\$} + b_{\$3}^{\$}\omega + b_{\$5}^{\$}\omega_{3}, & \omega_{0}^{\$} = m^{\$k}\omega_{k},
\end{cases} (5.2)$$

причём $b_{13}^1 + b_{23}^2 = 0$.

Система (5.2) определяет комплексы K_2^0 с произволом одной функции двух аргументов .

Библиографический список

- 1. Малаховский В.С. Поля геометрических объектов на многообразии квадратичных элементов // Дифференциальная геометрия многообразий фигур. Калининград , 1995. Вып. 26. С. 59-65.
- 2. Малаховский В.С. Комплексы кривых второго порядка в трёхмерном проективном пространстве // Литовский мат. сб. 1963. Т.3. №2. С. 254-255.
- 3. Малаховский В.С. Дифференциальная геометрия многообразий фигур и пар фигур в однородном пространстве // Тр. геометр. семинара / ВИНИТИ. М. , 1969. Т.2. С. 179-206.

V.S. Malakhovsky

COMPLEXES OF CONICS IN P₃ WITH A DEGENERATE EQUIPPING MANIFOLD

Three-parameter family (complex) K of nondegenerate conics is considered in three-dimensional projective space P_3 . A point B, not lying in the conic plane, is in cariantly associated with each conic $C \in K$. Comlexes K with a degenerate in two-dimensional

surface equipping manifold (B), formed by these invariant points (complexes K_2) are investigated. Such complexes are defined with arbitrariness of three functions of three arguments. Subclasses of complexes K_2 are studied with special properties of associated geometric forms.