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Abstract: This manuscript is dedicated to the concept of emer-
gence in modern systems biology and discusses the essence of 
this concept, its role, and its implementation using the example 
of epidemic modeling for COVID-19, where three dimensions 
of emergence should be integrated: (i) the emergence of the epi-
demic and the spread of the virus in a population from interac-
tions between susceptible, infected, and recovered individuals; 
(ii) the emergence of health-related properties of one individual 
from interactions between biomolecules; (iii) the emergence of 
the research project from interactions between various institu-
tions collecting different pieces of clinical data.

Systems biological understanding of biological emergence may 
require changes in data management approaches. By adding 
the concept of Emergence, classical FAIR data management may 
be extended to FAIRE, where data become not only Findable, 
Accessible, Interoperable, and Reusable, but also Emergeable 
(FAIRE). To implement FAIRE data management, we propose a 
Silicon Organism Model-Engrossed Data Integration approach 
(SOMEDAI), where data are not just stored in separate data-
bases, but are integrated into a mathematical model. The latter 
allows for validating data consistency and using the data to re-
construct the emergent behaviour of the whole system.
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Резюме: Настоящая работа посвящена обсуждению кон-
цепции эмерджентности в современной системной биоло-
гии и затрагивает применение этой концепции в эпидемио-
логическом моделировании COVID-19, где можно выделить 
три направления эмерджентности: (i) эмерджентность 
эпидемии в популяции, возникающая из взаимодействий 
между неинфицированными, инфицированными, и пере-
болевшими индивидуумами; (ii) эмерджентность физиоло-
гического ответа на инфекцию на уровне инфицированного 
организма, возникающая из взаимодействий между биомо-
лекулами, и (iii) эмерджентность самого научно-исследова-
тельского проекта возникающая из взаимодействий между 
различными институтами и частниками проекта. 

Системно-биологическое понимание биологической 
эмерджентности вызывает необходимость некоторых из-
менений в подходах по дата менеджменту. С добавле-
ние концепции эмерджентости, классический подход так 
называемого FAIR дата менеджмента (аббревиация от 
Findable, Accessible, Interoperable, Reusable), трансформи-
руется в FAIRE (Findable, Accessible, Interoperable, Reusable, 
Emergeable), то есть данные становятся не только легко на-
ходимыми, доступными, взаимно совместимыми, но также 
эмерджентными. Для реализации FAIRE дата менеджмен-
та предлагается подход модельно-ориентированной инте-
грации данных (SOMEDAI), при котором данные не просто 
сохраняются в базах данных, но сразу же интегрируются в 
математическую модель, что позволяет одновременно ве-
рифицировать качество данных и реконструировать биоло-
гическую эмерджентность.

Ключевые слова: системная биология, эмерджентность, 
свойства компонентов, зависящие от состояния всей систе-
мы. комплексные адаптивные системы, FAIR данные, мо-
дельно-ориентированная интеграция данных, SIER модели, 
карты болезней, COVID-19
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Introduction: Emergence, Design and State Dependency  
of Component Properties in Computer Models

Systems Biology aims to understand how biological function, which is absent from 
molecules in isolation, emerges when they become components of a system [1; 2]. The 
philosophical concept of “emergence” is central here. An emergent property can be 
defined as a property of a system that satisfies three theses about emergence: (i) the 
thesis of physical monism, (ii) the thesis of synchronous determinism, and (iii) the 
thesis or notion of being a systemic (organizational) property [3]. If all three theses 
are satisfied simultaneously, the property may be called an emergent property. The 
thesis of physical monism restricts the nature of the system’s elements, stating that 
the system consists only of physical entities. The thesis of synchronous determin-
ism restricts the way systemic properties and the system’s microstructure are related, 
stating that there can be no difference in systemic properties without changes in the 
structure of the system or in the properties of the components: properties of interest 
(e. g., metabolite concentrations) are underpinned by changes in the system (e. g., 
changes in component concentrations, reaction rates). The thesis or notion of being 
a systemic (organizational) property means that a property is not exhibited by ele-
ments in isolation. 

It has become traditional to distinguish between weak emergence and strong 
emergence, depending on whether the specific behaviour of the system’s components 
derives from, or does not derive from, the components’ behaviour in simpler con-
figurations [3]. This distinction has a deep intuitive background. Let us consider the 
classic example: a piece of diamond is hard, and a piece of graphite is soft, because 
atoms of carbon are arranged differently in these two systems; the emergent property 
(hardness or softness) depends on the interactions between the system’s components. 
If we assume a simpler configuration of the system, e. g., a small piece of diamond, 
we can deduce how the atoms of carbon should be arranged to give rise to hardness. 
In other words, systemic properties of a large piece of diamond can be deduced from 
the components’ behaviour in simpler configurations. Consequently, the emergence 
would be classified as weak emergence. Now let us consider a living cell. Obviously, 
if we cut this cell into a hundred small pieces, each piece would be dead in isolation. 
From here, we can intuitively conclude that the property of being alive is a strongly 
emergent property.

However, we may also take a look at the issue from a different angle. The prop-
erties of carbon atoms in a diamond are the same in both larger and smaller pieces; 
component properties do not depend on the state of the system (e. g., the size and 
geometrical shape of the diamond). By contrast, the properties of macromolecules 
in the cell — e. g., how they interact with each other — do depend on the state of the 
cell. For instance, assume we alter the concentration of just one component in the cell, 
such as an enzyme. This will change the concentrations of that enzyme’s substrates 
and products. It is very likely that one of these substrates or products will serve as 
an activator, inhibitor, or substrate for another protein. This second protein may, in 
turn, be a transcription factor for a different enzyme or an activator of a third pro-
tein, and the effect of the initial change will propagate until, eventually, the proper-
ties (behaviour, concentrations, activity) of all components in the cell are altered [4; 
5]. Components are fit to the system as a whole; their properties depend on the pres-
ence of other components, on boundary conditions, and on the initial conditions of 
the cell [6]. The component properties of pieces of diamond are not state-dependent. 
On the other hand, the component properties of parts of a cell are, to a large extent, 
state-dependent. If we imagine a small piece of a cell with the same composition 
of amino acids, lipids, ribonucleotides, and other molecules as the intact cell, some 
state-dependent information about molecular interactions — e. g., the purposeful ar-
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rangement of these molecules as it existed in the whole cell — would be missing. The 
reconstruction of the emergent property of the whole cell would require information 
about these state-dependent properties of molecules. The emergence in the diamond 
differs from that occurring in the cell in the degree to which component properties in 
these two systems are state-dependent.

There is no emergence that is purely weak or purely strong; rather, emergence can 
be stronger or weaker, depending on how much we need to know about the state-
dependency of the component properties — e. g., hysteresis, boundary conditions, 
flux of mass and energy through the system, and the number of other components 
affecting a given component property. The stronger the emergence, the more infor-
mation about state-dependency is required. This also implies that, even if some pro
perties might seem very strongly emergent, their emergence can still be reconstructed 
from the knowledge of component properties — we simply need to consider more 
information about their state-dependency [4; 6]. 

This state-dependency of system component properties can be described in terms 
of mathematical equations. It is, in fact, a central feature of systems biological mo
dels (Fig. 1). It makes the systems biology approach both reductionist and holistic at 
the same time. It is reductionist because the emergent behaviour is explained in the 
model in terms of system components, and it is holistic because the reconstruction of 
emergent behaviour requires information about the system as a whole [4; 6].

Fig. 1. Reconstruction of emergent behavior in a systems biological model.  
Systemic functioning emerges from interactions between biomolecules. 

There are three approaches to link the layer of interacting biomolecules to systemic 
functioning: the bottom-up approach begins with experimentally characterized interactions 

between biomolecules; the top-down approach starts with systemic functioning; 
and the middle-out approach begins with an entity of intermediate complexity, 

such as a cell, and extends both up to organismal functioning and down 
to interacting biomolecules 

The reconstruction of emergent behaviour in a computer model from the know
ledge of state-dependent component properties is closely linked to the concept of sys-
tems design. By definition, design is “the constellation of system components, their 
specific properties, and their pattern of interactions that together determine the inte-
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grated behaviour of the system” [7]. This understanding — that the arrangement of 
system components is responsible for a generic set of functions — can be formalized 
as a more general concept of a design principle.

A design explanation builds a bridge between the underlying mechanism of inte
racting components and a specific emergent property associated with the design. In 
this respect, the design explanation resembles a causal explanation, but it also adds a 
new dimension by requiring the emergent property to be functional — i. e., to serve a 
specific role for the organism — and by addressing the question: “Why does the sys-
tem consist of the parts it does, and why are those parts organized in this particular 
way?” [8]. Design implies a purposeful arrangement of parts [9]. In a design study, 
we assume that the system is structured to give rise to the emergence of a useful bio-
logical function.

Going further, according to Anokhin’s theory of functional systems (TFS), “a sys-
tem can be called a complex of selectively involved components where all interac-
tions are presented by mutual cooperation of components focused on obtaining a use-
ful result” [10]. The idea that a goal precedes its realization by the organism was also 
recognized in Kant’s doctrine on the end of all things, illustrated in his example of the 
flute: “If Peter carves a flute, then his will (or his movement of his hands in a certain 
way) causes the flute (O), but his will (his movement of his hands) is determined by 
Peter’s idea of the flute (S)” [11]. Interestingly, this topic has also found its way into 
design studies of artificial systems, and is discussed by various authors — some-
times in direct analogy with the ancient “noema” concept of Plato (428/427 BC) [12]. 
According to this concept, a future noema (not yet realised) becomes a current noema 
in the process of noesis (realisation through interaction with the environment). Since 
the current noema will differ from the originally planned future noema, the future 
noema must be readjusted, and the loop continues. The theory of functional systems 
does not use the term noema, but it effectively implies noesis when discussing reverse 
afferentation.

To summarize, when building a systems biological model, we imply design of 
the system, and reconstruct emergent behavior in silico by incorporating information 
about the state-dependency of component properties into mathematical equations. 
The stronger the emergence, the more information about the state-dependency of sys-
tem component properties we need to include in our model. Let us explore this in the 
context of COVID-19 studies, where, in order to learn from the pandemic and prepare 
for potential future epidemics, we must consider three dimensions of emergence.

Three Dimensions of Emergence in COVID-19 Research

First Dimension of Emergence: Dynamic Model of Virus Spread  
at the Population Level

With the outbreak of the COVID-19 pandemic, the initial focus of research was to 
build a predictive model of how SARS-CoV-2 spreads within the human population. 
This was modeled using the SIR (Susceptible, Infectious, and Recovered) framework, 
where the spread of the virus emerged from interactions between susceptible, infec
ted, and recovered individuals. One of the earliest COVID-19 SIR models, developed 
by Westerhoff & Kolodkin [13], considered 14 components, with transitions between 
them described by a mass-action law (Fig. 2). The model, available at FAIRDOMHub 
(https://fairdomhub.org/models/693), enabled predictions of various measures’ ef-
fects on the epidemic and allowed for comparisons of different lockdown-release 
strategies across countries. Although the model proved useful, its predictive power 
was limited by the simplistic mass-action reactions used to describe transitions be-
tween system components. This limitation was partially addressed in a delay-diffe

https://fairdomhub.org/models/693
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rential SEIR model for improved infection dynamics, developed by Kiselev, Akberdin, 
and Kolpakov [14]. In this model, Susceptible, Exposed, Infected, and Recovered 
(SEIR) individuals were treated as model components, with transitions modeled  
using more sophisticated mathematical equations that incorporated time delays and 
instantaneous transitions. Furthermore, the model accounted for different population 
groups, symptom progression from mild to critical, vaccination, the duration of pro-
tective immunity, and new virus strains.

Fig. 2. Systems biology model of the COVID-19 epidemic. 
Species are represented in boxes, and reactions 
(irreversible, mass-action) are shown as arrows. 

The infection coefficient is modeled as a linear function of the numbers  
of infected-nontested, infected-tested, symptoms-nontested,  

and symptoms-tested individuals.  
It is also state-dependent on the level of social interactions. 

The full model, including all parameter values, is available at
https://doi.org/10.15490/fairdomhub.1.model.693.1 

(Adapted from Westerhoff & Kolodkin [13])

Still, even more sophisticated mathematical equations describing transitions, such 
as between Exposed and Infected, or Infected and Recovered, remain too simplified 
and tend to underestimate the strength of emergence. For instance, the transition 
from Exposed to Infected emerges from multiple interactions between the human or-
ganism and the virus, underpinned by numerous physiological processes within the 
organism that are highly state-dependent on individual genetic and environmental 
factors. This represents another dimension of emergence.

Second Dimension of Emergence: Virus-induced Physiological Behaviour

The response of the organism to the virus and the progression of COVID-19 at 
the individual level emerges from interactions between the virus and a range of 
physiological processes. For instance, SARS-CoV-2 affects multiple molecular 
networks and triggers several pathophysiological mechanisms. Viral RNA and proteins 
have been found in tyrosine hydroxylase-immunoreactive neurons in the substantia 
nigra of deceased COVID-19 patients. The presence of the virus was associated with 
microgliosis and CNS platelet-enriched microthrombi in small parenchymal vessels 
[15]. There are multiple interconnected mechanisms through which the virus may 
induce both microgliosis and thrombosis, such as via NF-kB signaling, which could, in 

https://doi.org/10.15490/fairdomhub.1.model.693.1
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turn, be linked to oxidative stress and mitochondrial dysfunction [16]. In attempting to 
reconstruct, in silico, the influence of SARS-CoV-2 on the organism, we must account 
for increasingly complex molecular mechanisms. Even more intracellular networks 
will need to be considered when developing COVID-19 precision medicine, such as 
delivering specific drugs to infected cells [17]. Ultimately, we may need to extend the 
model to encompass a whole-body silicon cell model.

The COVID-19 Disease Map initiative, organized by the University of 
Luxembourg, aimed to integrate and continuously update all available information 
on the mechanisms by which SARS-CoV-2 interacts with the human organism. The 
initiative involved more than 230 scientists from diverse backgrounds, representing 
120 institutions across 30 countries. As a result of the project, a knowledge repository 
of the molecular mechanisms underlying COVID-19 was created — approaching the 
complexity of the whole body (https://covid.pages.uni.lu/).

However, only several fragments of the knowledge integrated within the 
COVID-19 Disease Map were ultimately transformed into mathematical models. 
One successful example is the flux balance model by Renz, Widerspick, and Dräger 
[18]. The COVID-19 Disease Map proved useful [19] and helped, to some extent, 
reconstruct the emergence of diseased behaviour at the level of the human organism. 
Still, the emergence was represented as weaker than it actually is, and much of the 
state-dependency of component properties was missing. It is crucial that both the 
emergence of individual, patient-specific responses to the virus and the emergence at 
the epidemiological level (e. g. modelling how various virus strains spread through 
society) should be integrated into a single model.

Third Dimension of Emergence: Emergence of Research Projects

There is also a third, explicitly social, dimension of emergence, where interactions 
between various participants and institutions — each collecting different pieces of in-
formation — should lead to the emergence of an integrated systems biological under-
standing. In principle, this would involve merging the modelling of epidemics with 
the modelling of individual physiological responses to a virus. On this layer of emer-
gence, the system’s components are researchers, data managers, medical doctors, 
nurses, research groups and institutions, hospitals, and others. They interact within 
the framework of a project, and various project outputs — such as insights, scientific 
concepts, and proposed medical treatments — emerge. Once again, the concept of 
design is applicable: the goal serves as the system’s formative factor, and the system 
is designed for useful emergence — e. g., new scientific understanding. However, 
this useful output (the project goal) evolves continuously throughout the project (a 
continuous adjustment of the future noema), making the project itself a Complex 
Adaptive System.

An example of how the goal — as the system’s forming factor — may adapt during 
a project is found in research on the long-term consequences of SARS-CoV-2 infection. 
Initially, researchers would define “Long COVID”, a consequence of COVID-19, in 
varying ways. In some cases, it was simply defined as the presence of any symptom 
persisting 12 months after infection [20]. In others, more specific, model-driven 
definitions were proposed. For instance, in one mathematical model of the immune 
response to SARS-CoV-2, Long COVID corresponded to a stable stationary or periodic 
solution that persisted in the system after the acute infection phase [21].

Subsequently, the World Health Organization (WHO) unified the understanding 
of Long COVID by providing the following definition: “the continuation or develop-

https://covid.pages.uni.lu/


58 of 91Современные направления в биомедицине 2025

ment of new symptoms 3 months after the initial SARS-CoV-2 infection, with these 
symptoms lasting for at least 2 months with no other explanation” (www.who.int/
europe/news-room/fact-sheets/item/post-covid-19-condition). 

This WHO definition came into conflict with ongoing research projects in which 
data collection schedules had already been established based on different time-
lines. For example, the Luxembourg-based CON-VINCE study (COVID-19 National 
survey for assessing VIral spread by Non-affected CarriErs) [22], later followed by 
ORCHESTRA project, an EU Horizon 2020 initiative (https://orchestra-cohort.eu/), 
which aimed to standardize and harmonize COVID-19-related data collection me
thodologies across multiple participating institutions to ensure consistency and inte
roperability in data sharing among researchers and public health authorities through-
out Europe. Its scope encompassed epidemiological modeling, vaccine development, 
therapeutic interventions, and the evaluation of public health strategies. The project 
also served as a platform for rapid data analysis and dissemination of findings, sup-
porting informed decision-making and public health responses during the COVID-19 
pandemic [22]. 

The CON-VINCE — ORCHESTRA data collection began as early as March 2020, 
at the very start of the pandemic, with the observation of non-infected participants. 
One fraction of participants remained non-infected and formed the control group. 
Another fraction became infected at some point during the study, thus providing 
samples both before and after infection. However, the project had been launched 
before the WHO Long COVID definition was published. As more knowledge was 
becoming available (e. g., the WHO definition of Long COVID), the project settings 
— such as sampling intervals, test types (blood, stool, saliva, and SWAB tests), and 
even the questionnaires — were adjusted accordingly. Initially, when asked about 
their symptoms, the participants would answer questions, like: “Did you have any 
symptoms until today?” Later, this question was modified to: “Did you have any 
symptoms during the previous week?” or “Have you been having continuous symp-
toms since the last visit?” These changes, while small, imposed limitations on the 
interpretation of Long COVID data [22—24]. In addition, some symptoms — such as 
loss of smell — which were initially not monitored, later turned out to be central in 
Long COVID studies [22—24].

Many challenges in project setup were unavoidable, given that both the spread of 
infection in the population (the first dimension of emergence) and the exact mech-
anisms by which the virus affects the organism on an individual level (the second 
dimension of emergence) were unknown at the outset. If a whole-body computer rep-
lica of the human organism (silicon / virtual / digital) had existed, the data collection 
and analysis processes could have been organized differently. The COVID-19 disease 
map could have been projected onto this whole-body model, which could then be 
parameterized for each individual patient (digital twin).

Live Data: Findable, Accessible, Interoperable,  
and Reusable (FAIR),  
and also Emergeable (FAIRE) Data Management

We often think of data as something given to us. The very word ‘data’ in all Indo-
European languages means ‘given,’ originating from the Sanskrit ददाति [dadAti] and 
दत्ते [datte], which literally translate as ‘give’ or ‘given.’ This evolved into various 
forms across languages: дать [dat’] (Russian), देना [dena] (Hindi), dare (Latin and 
Italian), dar (Spanish), donner (French), donate (English), and so on.

It can be argued, however, that data is something that we take in depending on the 
way our perception is set up. We might see water as a liquid with particular physical 
properties, as a molecular formula (H₂O), or as a system of elementary particles. With 

http://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition
http://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition
https://orchestra-cohort.eu/
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systems biological modelling, we often treat the properties of system components 
as given, fixed inputs and focus on quantifying data; on making data findable, 
accessible, interoperable, and reusable (FAIR). However, these component properties 
are actually state-dependent — and in many cases, emergeable, since they emerge 
from interactions between other components in the system. Linking one component’s 
property to others and reconstructing the system’s overall emergence would, in effect, 
bring Emergence into the FAIR principles. In this sense, FAIR becomes FAIRE — to 
borrow the French verb faire, meaning “to do” or “to make.” FAIRE is not just about 
organizing data for access, but about integrating them into a model where one piece 
of data can be derived from others. In the words of Ernest Rutherford, who once 
said that “all science is either physics or stamp collecting,” we move from “stamp 
collecting” to “physics” in biology — computing emergent properties from known 
components, and linking them together in one equation. What sets biology apart, 
however, is that we do not rely on a handful of universal equations. Instead, we 
reconstruct emergence through a more complex mathematical model that accounts 
for higher levels of state dependency.

The next question is how to organize this emergence-oriented FAIRE data 
management. We propose an approach called Silicon Organism Model-Engrossed 
DAta Integration, abbreviated as SOMEDAI (Fig. 3). We use the term “model-
engrossed data integration” to emphasize that a mathematical model, rather than 
a traditional database, is used to store data — and not only to store it, but also to 
integrate different data points by linking them within the model itself. The “Silicon 
Organism Model” refers to a widely accepted concept of whole-body mathematical 
models in which emergent behaviour is reconstructed in silico through the interactions 
of system components (biomolecules).

The first step in the SOMEDAI approach is blueprint modelling of the organism. 
Instead of modelling individual organisms or addressing isolated research questions, 
we propose creating a single, generic blueprint model with various “version con-
trol” instantiations. In fact, all cells and organisms are remarkably similar: the basic 
building blocks (e. g., amino acids) and metabolites (ATP, glucose, pyruvate, etc.) are 
largely the same, and the biochemical reactions between them follow similar pat-
terns. All living cells have very much the same processes coded by the same genes, 
with differences arising mainly from which genes are switched on or off during cell 
differentiation. Therefore, we can conceptualize a blueprint organism model as a 
kind of master copy that encompasses all potential instantiations. We may build such 
a blueprint model where small changes in gene expression bring organism-specific, 
or tissue-specific, or condition-specific, or disease-specific, or other specialized ver-
sions of the model.

There are two main strategies for building a blueprint model. One is a bottom-up 
approach: starting with knowledge-based, mechanistic interactions between compo-
nents — e. g. biomolecules such as genes, RNA, proteins, and metabolites — and then 
generating organism-, cell-, tissue-, or other context-specific instantiations. Measured 
parameters are inserted into these instantiations to observe emergent behaviour, 
which can then be compared with experimental observations from specific cells or 
organisms. The other strategy is a top-down approach, where the network of interac-
tions between components is inferred by observing the behaviour of the entire system 
in response to perturbations. A third option is a middle-out strategy, which integrates 
fragmentary knowledge to model the behaviour of a single organ or functional sys-
tem. This is done by focusing on interactions between entities at lower, but not neces-
sarily molecular, levels of organization (Fig. 1).

Promisingly, the outputs of all three approaches can be compared — with each 
other and with experimental observations (Fig. 3). Step by step, both top-down 



60 of 91Современные направления в биомедицине 2025

and bottom-up models should converge with experimentally measured behaviour. 
Estimating this convergence will form a kind of controller for data integration — 
namely, the model itself — enabling the reconstruction of all three dimensions of 
emergence discussed earlier.

Fig. 3. Silicon Organism Model-Engrossed Data Integration (SOMEDAI). 
Some data consist of specific experimentally measured parameters, such as physical 
properties of certain enzymes (e. g., Vmax, Km). Other data capture experimentally 

observed emergent behaviour in response to perturbations. These parameters 
and emergent behaviours can be integrated into a mathematical model. 

The model, based on state-dependent component properties, aims to reconstruct 
the emergent behaviour in silico. The simulated behaviour can then 

be compared with the corresponding experimental data. Parameters that have 
not yet been measured, or those measured with low confidence, 

can be estimated (fitted). This creates a feedback loop, improving the model 
with each new data input

After model-driven integration of separate data pieces into the “right places,” data 
will become not only FAIR (Findable, Accessible, Interoperable, and Reusable), but 
also emergeable and “intelligent,” at least in some aspects of intelligence [25]. For ex-
ample, the integrated system will show robust adaptation, such that all data together 
form a homeostatic system, and each new “small piece” of data will be adjusted or 
rejected based on the integrity of the larger model encompassing all datasets as a 
whole. Thus, the system will become capable of proposing the next set of experiments 
and guiding researchers — in a way that humans may eventually lose their grasp on 
the research process and delegate the “understanding” to more advanced integrated 
systems, such as a robot scientist (https://en.wikipedia.org/wiki/Robot_Scientist).

This integrated “intelligent” model will make data live — in the sense that the 
knowledge embedded in the data in the data about component properties of the sys-

https://en.wikipedia.org/wiki/Robot_Scientist
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tem and about the behaviour of the system will continuously adjust in response to 
the system’s evolution. In the study of epidemics, this will enable the integration of 
all three dimensions of emergence: the emergence of an epidemic from interactions 
between individuals in a population; the emergence of individual physiological re-
sponses to the virus from intracellular mechanisms; and the emergence of the project 
aimed at understanding and controlling the epidemic.

Concluding Remarks

We have discussed how addressing unknown epidemics depends on successful-
ly integrating three dimensions of emergence: emergence at the population level, 
emergence at the level of organism-specific response to the virus, and emergence of  
project organization. We have proposed the Silicon Organism Model-Engrossed Data 
Integration (SOMEDAI) system as a way to embrace the high state dependency of 
component properties and, thereby, to integrate all three dimensions of emergence — 
making data collection and analysis both live and intelligent.

A system like SOMEDAI cannot be implemented at the level of a single researcher, 
research group, or even several “self-organizing” groups. Instead, it requires a de-
signed infrastructure that enables the consolidation of professional efforts, and the 
unification and standardization of various research components (e. g., modeling and 
data collection) for better integration into a unique system.

In reality, the first steps toward SOMEDAI data integration have already been 
taken at the level of research infrastructures. One example is the pioneering work 
of Make Me My Model (M4) by Infrastructure Systems Biology Europe [26; 27], 
within the EU Horizon 2020 project, Coordinated Research Infrastructures Building 
Enduring Life-science Services (CORBEL) (www.corbel-project.eu), which was fur-
ther developed into the European Open Science Cloud for Life Sciences (EOSC-Life) 
(www.eosc-life.eu).

The starting point was the JWS Online model repository (https://jjj.bio.vu.nl/), 
where pre-built models — essentially small blueprint models — could be run online 
using either default parameters curated and approved by the JWS team or param-
eters chosen by the user based on their own experimental data. Users would often 
manually select parameters from curated databases, such as SABIO-RK (www.sa-
bio.h-its.org), so the first step was to automate parameter selection. Now, users can 
access the database, choose the appropriate organism and conditions, click a button, 
and all selected data are automatically retrieved for simulations on JWS Online. This 
is just the first small building block of the SOMEDAI system. The next step would be 
to create a universal blueprint model linked with organism- or cell-specific instantia-
tions. After fitting a cell-specific model to data and comparing the emergent behavior 
between the model and experiment, the feedback should be used to adjust the blue-
print whole-body model.

At the same time, it should be acknowledged that relatively small projects like 
CORBEL or EOSC-Life are not equipped to fully implement the SOMEDAI approach. 
The strength of emergence that needs to be reconstructed in a blueprint model is sub-
stantial and requires the emergence of an infrastructure with the appropriate com-
plexity — potentially comparable to the scale of Space programs.
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