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Pesiome: CospemenHas (apmarieBTuueckas HayKa IIpeTepire-
BaeT 3HauMTeAbHBle M3MeHeHUs 0aarojapsl aKTMBHOMY BHe-
APeHUIO KOMIIBIOTEPHBIX TEXHOAOIUII B IIpoliecc pa3paboTKM
AeKapCTBeHHBIX cpeAcTB. Ilepes TpaaumuoHHBIMM BDTamamu
CHHTe3a U DKCIIePUMEHTaABHOI IIPOBEPKI McCAel0BaTeAN BCe
Jalre IpUMEeHSIOT i silico TT0AXOABI, ITO3BOASIOINIE C BBICOKOI
TOYHOCTBIO MOAEAMPOBaTh CTPYKTYPY U (papMaKOA0TndecKe
9 PexTer xmMmIeckux coeamHennii. Taxoir moaxog obecrie-
qyBaeT 3HAUYUTEAbHYIO DKOHOMUIO BPEMEHHBIX 1 (PMHAHCOBBIX
pecypcoB, ONITUMUBUPYSI TTOCAeAYIOIIe SKCIIepUMeHTaAbHbIe
nccaesoBanus. 1lapasseapHo ¢ 9TUMM HaDAIOAA€TCS aKTUBHOE
pasBuUTIe DIUTeHOM-HaIlpaBAeHHON Tepanny — HOBOTIO ITOA-
X0/a, MO3BOASIONIET0 MOAYAMPOBATh DKCIIPECCUIO T€HOB, BOB-
A€4eHHBIX B IaTOAO0TMYeCcKIe MIPOoIIecchl, 0e3 MpsMOTo BO3Ael-
crus Ha nepsuunyio crpykrypy AHK. B aannoi paborte Ha
IpuMepe XeAMAOHOBON KICAOTHI MpecTaBAeH KOMILAEKCHEIN
aATOPUTM OILIEHKM BAVISIHNS Ma/bIX MOAEKyA Ha DKCIIPecCHIO
TeHOB 1 MeTaboAnuecKux myTeil. MeToAnKa OCHOBaHa Ha MC-
noap3osannm sed-cepsuca DIGEP-Pred 2.0 ¢ mocaeayrommm
MHOTOYPOBHEBBIM OMOMH(POPMaTUIECKIM aHaAM30M, BKAIO-
garomumM: (1) aHaan3 M3OBITOYHON perpe3eHTaTUBHOCTHU Te-
HOB; (2) OIleHKY BOB/1e4eHHOCT! MeTaboAMIecKuXx ImyTeir; (3) nx
¢yHKIMOHAaABHYIO KaAacTepuaanmio. IlpeasaraeMbri moaxog,
CIIOCOOCTBYeT peIeHNnio 3ajad Kak A4s (pyHAaMeHTaAbHBIX,
TaK U A4S IPUKAAAHBIX VICCA€AOBaHUIT MEXaHN3MOB AeICTBII
AeKapCTBEeHHBIX BeIlleCTs.
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Background and the Theory

Pharmaceutical research and development are expensive, time-consuming, and
risky processes [1]. The process of targeted drug synthesis is challenging due to
limited knowledge of many molecular targets, as well as the high cost of researching
their structures and ligands [2]. In silico technologies have become essential in the
modern pharmaceutical industry, as they can significantly reduce the time and
resources required for drug development [3]. These technologies include predictive
data analysis, building models with specified properties, and virtual screening of
large chemical libraries in order to find effective drug candidates, making it possible
to solve many problems of modern pharmacy [4]. Thus, more and more scholarly
attention is now focused on the strategy of computer-aided drug design (CADD),
which includes computational identification of potential drug targets [5], virtual
screening of large chemical libraries to identify effective drug candidates [6], and
further optimization of candidate compounds and computational assessment of their
potential toxicity [7]. Following these computational processes, candidate compounds
undergo in vitro/vivo experiments for confirmation [8]. Therefore, in contrast to the
traditional approach, which involves the expensive synthesis of numerous compounds
followed by their experimental testing for biological activity, selectivity, and toxicity
[9], CADD methods can significantly reduce the number of compounds tested and
increase the chances of success by eliminating ineffective and toxic substances first.
Virtual screening, for instance, has been shown to increase efficiency (defined as the
number of compounds that bind at a given concentration divided by the number
of compounds tested experimentally) by approximately 100—1000 times when
compared to random screening [10].

In the modern pharmaceutical industry, there is a growing interest in developing
drugs targeting genes involved in pathological metabolic pathways [11]. This ap-
proach, known as epigenome-directed or epigenetic therapy [12; 13], aims to modu-
late gene expression without altering the DNA sequence. Epigenetic therapies involve
the use of drugs that selectively affect the activity of specific genes, leading to changes
in their expression [14]. These drugs can be used to treat a variety of diseases, includ-
ing cancer and metabolic disorders. Currently, predicting changes in gene expression
under the influence of a particular compound without the use of computer technolo-
gy is impossible [15; 16]. An important tool in the creation of new drugs has become
the assessment of structural similarity based on the principle that similar molecules
have similar biological activity [17]. The first tool to predict the biological activity
of compounds based on their structure is the PASS (Prediction of Activity Spectra
for Substances) computer program [18]. The training set for this program consists of
information on the structures and biological activities of compounds obtained from
large experimental databases such as ChEMBL, PubChem and PASS, which together
contain more than 300 million records. The prediction accuracy of PASS exceeds 0.96
for over 5,000 different types of biological activities [19]. In order to predict gene
expression profiles, the DIGEP-Pred (Prediction of drug-induced changes in gene ex-
pression profile) program was developed [20].

The DIGEP-Pred 2.0 web service allows the users to model in silico the effect of
substances on gene expression profiles based on their molecular structure [21]. To
make predictions, the service uses literary data from the Comparative Toxicogenomics
Database (CTD) as well as experimental data obtained from microarray analysis of
the MCF7, PC3, and HL60 cell lines. The accuracy of the predictions reaches 86.5 %
for models trained on the CTD and over 87 % for those based on experimental data
[21]. The prediction results are presented as three key parameters for each gene: the
probability of being active (Pa), reflecting the similarity of the molecule to known active
compounds in the PASS training set; the probability of being inactive (Pi), showing
the structure resemblance to inactive compounds in the same set; and the invariant
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prediction accuracy (IAP), obtained through the leave-one-out cross-validation (LOO
CV) procedure and numerically equal to the AUC value of the ROC curve. LOO CV is
used to assess the robustness of the model on the full PASS training set.

Technical requirements

The DIGEP-Pred 2.0 web service does not require local installation and is availa-
ble online (https://www.way2drug.com/digep-pred/). The R programming language
(version 4.5.0), distributed under the GNU GPL v2 license (https://www.gnu.org/
licenses/old-licenses/gpl-2.0.en.html), was used for data processing. The minimum
system requirements and installation instructions for working with R can be found
on the official product page (https://www.r-project.org/). To ensure proper operation
of the used packages, it is recommended to use the 64-bit version of R. Bioinformatics
analysis was performed using the following R packages: “clusterProfiler” [22—25)],
“DOSE” [26], “AnnotationDbi” [27], “org.Hs.eg.db” [28], “KEGGREST” [29], “GO.
db” [30], “rWikiPathways” [31]. All packages were installed via Bioconductor version
3.21.0. Basic R “graphics” and “ggplot2” were used for general data visualization, as
well as the specialized “RCy3” package [32] for more advanced graphics.

Description of the Pipeline

The first step is to obtain a small molecule structure file. There are several
restrictions to consider for the molecule, including electrical neutrality, consisting of
a single component, the presence of covalent bonds only, and a maximum molecular
weight of 1,250 atomic mass units; for a complete list of requirements, please see
publication [19]. If there is a priori information about the compound under study, it
is recommended to search in the open chemical databases such as PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and CheMBL (https://www.ebi.ac.uk/chembl/). From
these databases, you can download the 2D structure in SDF format or a SMILES
(simplified molecular input line entry system) line. If the substance is new or the
information is not available from the previously mentioned databases, researchers
need to depict the structure themselves using the DIGEP-Pred 2.0 web service. Since
chelidonic acid (ChA) has a known chemical structure, a search in PubChem revealed
the SMILES string C1 = C(OC(= CC1 =0O)C(= O)O)C(=O)O.

The next step is to use DIGEP-Pred 2.0, allowing the researcher to obtain a list of
genes that may change their expression under the effect of the studied compound.
However, it is important to remember that DIGEP-Pred 2.0 does not provide
information about the causes of these changes. In addition to the compound being
studied, DIGEP-Pred 2.0 requires other input parameters such as (1) the dataset used
to train the model, (2) the threshold of Pa values, and (3) the direction of expression
changes (Up/Down). The choice of the first parameter (dataset) is crucial and depends
on the study design and the intended methods for verifying the results in vitro/vivo. The
model creators provide the option to use both long-term literature data from the CTD
or experimental data from three cell lines: MCF7, PC3, and HL60. When studying the
general effects of a test substance, the CTD_mRNA or CTD_protein training sets from
the literature are recommended, as they offer extensive gene output data. However,
experimental validation may be challenging given the data’s generalization across
diverse cell lines. At the same time, using experimental training data can solve this
problem, but the resulting list of genes will be significantly smaller compared to the
literature sets. It is also worth noting that experimental sets are divided by logarithmic
(base 2) fold change in gene expression (LFC). To identify all genes with modulated
expression, run the simulation for each LFC value (0.5, 0.7, 1, 1.5, and 2). For clarity,
Table 1 provides an example.


https://www.way2drug.com/digep-pred/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.r-project.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/

Cospementivie Hanpasrenus 6 Guomeduvute 2025 10 of 91

Table 1
Comparison of simulation results using different training data sets
Dataset name Number of genes obtained

by modeling the effects of ChA
CTD_mRNA 9,151
CTD_protein 2,133
cMAP_HL60 (LFC0.5+0.7+1+1.5+2) 3,871 (1,809 +1,194 + 589 + 193 + 86)
cMAP_MCF7 (LFC0.5+0.7+1+1.5+2) 1,603 (762 +497 +237 +72 + 35)
cMAP_PC3 (LFC0.5+0.7+1+1.5+2) 895 (396 +275 + 133 + 54 + 37)

Note: The remaining input parameters were kept constant for all simulations: the lower limit of
the values was Pa>DPi, and the direction of regulation was Up.

The choice of the lower limit for the Pa value directly affects the number of results
obtained. A higher threshold increases the likelihood of detecting the test substance’s
activity in relation to the identified genes, but it also reduces the number of genes
selected. The authors of the model propose two approaches for choosing the lower
limit value [18]. For initial modeling, it is reasonable to use the value Pa>Pi. For
further analysis, either of the two proposed approaches can be applied. The direction
of expression changes determines which genes are included in the list: the expression
of those increases or decreases u

nder the influence of the substance. For a complete analysis, both lists are
needed. In this study, the input parameters as follows were used: training dataset
CTD_mRNA, thresholds Pa>Pi and Pa> 0.4 [18], and both directions of expression
change — Up and Down. As a result of the in silico prediction of the gene expression
assessment under the influence of ChA, a list of genes with corresponding expression
directions (over- or under-expression), activity values (Pa), inactivity values (Pi),
and the prediction accuracy score (IAP value) was obtained. This resulted in 9,151
over-expressed genes and 9,207 under-expressed genes, with approximately 5,000
genes present in both lists. The authors of the model do not describe the process for
dealing with the bidirectional influence of a substance on the expression of the same
gene, so we introduced a weighted coefficient (CA) calculated using the formula:
CA =Pa *IAP. The CAs for the same genes in each list were compared, and the gene
with the lowest CA value was removed from the corresponding list. This resulted in
the reduced up-list of 6,309 genes and the down-list of 7,023 genes. Due to the large
number of genes involved in the analysis and the difficulty in assessing the effects
of over- or under-expression of a single gene in isolation from others, we did not
perform a detailed analysis of each individual gene. However, a detailed analysis of
individual genes can be carried out if required by the specific objectives of the study.

Gene set enrichment analysis (GSEA) and over-representation analysis (ORA) are
two commonly used methods for grouping genes into metabolic pathways. GSEA
uses a priori sets of genes that are grouped based on their involvement in the same
biological process. It then determines whether genes from this functional set are clus-
tered at the top (over-expression) or bottom (under-expression) of a ranked gene list.
Meanwhile, ORA tests whether genes from a certain set (such as a biological path-
way) are represented in this list more often than expected by chance.

Owing to the lack of information on the degree of gene expression change, we opt-
ed for ORA. In ORA, genes were grouped according to a metabolic pathway or com-
mon gene ontology in which their products are involved. The statistical significance
of their association of a particular group of genes was then assessed using Fisher’s
exact test. The list of possible metabolic pathways was obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and WikiPathways databases. The gene
ontology was obtained from the Gene Ontology database (GO). A simple and easy-
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to-use ORA is presented in the “clusterProfiler” package [22—25], which contains
several functions for performing ORA in each database (“enrichKEGG()”, “enrich-
WP()”, “enrichGO()”). The researchers can find a full description of these functions
in the documentation at https://www.bioconductor.org/packages/release/bioc/man-
uals/enrichplot/man/enrichplot.pdf. As a result, a table was generated for each data-
base containing the following information: the metabolic pathway identifier, its short
name, a list of gene products involved in the pathway, their number, and significance
estimates — p.adjust and g-value. The p.adjust represents a p-value adjusted using
the Benjamini—Hochberg procedure, which determines the expected proportion of
talse positive results (FDR) among all positive (significant) ones. In turn, the g-va-
lue determines the minimum FDR when a result is considered significant. While the
choice of the significance estimation ultimately rests with the researcher, we would
like to note that p.adjust is a more rigorous estimate, and g-value has higher statistical
power. Our study was a pilot one, and therefore, it was preferable to obtain as many
candidate pathways with the best metrics as possible for further investigation. With
this in mind, we chose to use the g-value. The number of significant (q-value <0.05)
pathways and ontologies are given in Table 2.

Table 2

The number of significant (q-value < 0.05) metabolic pathways / ontologies
identified during ORA in different databases

Gene expression Database
directions GO KEGG WikiPathways
Up 1,016 53 2
Down 1,258 86 48

One can notice a large variability in the number of pathways / ontologies obtained.
For researchers without relevant experience, the gold standard is KEGG, as it is re-
gularly updated and has strict data moderation. We recommend using GO when
functional annotation of genes is required, and WikiPathways when more detailed or
new information not present in KEGG is needed. Thus, manual assessment of path-
ways from KEGG and WikiPathways seems quite feasible under conditions of limited
human and time resources, without considering gene ontologies.

The next step could be to explore possible metabolic pathways associated with
the a priori target effects, if such effects are present. In our case, such an effect may
be the stimulation of osteogenesis. This possibility was previously demonstrated by
our team in [33; 34]. As a result of ORA, the up-regulated genes were combined into
eight significant (q-value <0.05) metabolic pathways related to osteogenesis, while
the down-regulated genes were combined into four metabolic pathways (Table 3).

Table 3

Metabolic pathways obtained by ORA for ChA target genes

Pa values of genes
included in the pathway

(Me (Q,;Q,)

Pathway / Genes
Ontology ID Name count

The overexpressed genes (Up-regulation)

) Ca?" ion transmembrane import into
GO0097553 | o501 66 0.72 (0.65; 0.82)
GO:0030282 Bone mineralization 47 0.72 (0.65; 0.79)
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The end of Table 3

Pathway / Genes Pa values of genes

Name included in the pathway
ntol 1D nt
Ontology cou (Me (Q,Q,)

GO:0045667  |Regulation of osteoblast

differentiation 55 0.75 (0.67; 0.82)
GO:0009612 Response to mechanical stimulus 77 0.70 (0.63; 0.75)
GO:0030198 Extracellular matrix organization 116 0.70 (0.62; 0.78)
hsa04064 NF-kappa B signaling pathway 42 0.71 (0.64; 0.81)
hsa04310 Wnt signaling pathway 63 0.77 (0.70; 0.82)
WP4141 Vitamin D3 signaling 16 0.75 (0.62; 0.83)

The underexpressed genes (Down-regulation)
GO:0030178  |Negative regulation of Wnt signaling

pathway 75 0.78 (0.68; 0.83)
hsa04010 MAPK signaling pathway 132 0.75 (0.66; 0.84)
hsa04668 TNF signaling pathway 61 0.74 (0.64; 0.83)
WP4787 Osteoblast differentiation and related

diseases 59 0.80 (0.68; 0.86)

Therefore, a number of metabolic pathways and ontologies containing candidate
genes were obtained for further experimental verification in vitro / vivo. The presented
algorithm is effective in the targeted search for metabolic pathways associated with
specific biological processes.

In cases when the researcher does not know in advance what processes the sub-
stance under study may affect, we propose to first assess the overall direction of the
effects by clustering all the identified metabolic pathways into larger modules. This
procedure is particularly relevant when dealing with a large number of identified
pathways and ontologies. The set of tools necessary to solve problems like this is
included in the “clusterProfiler” package [22—25] for the R programming language.
To illustrate this approach, we used the previously obtained gene ontology sets. The
ontologies in each list were grouped using the “pairwise_termsim()” function (a de-
tailed description of the parameters can be found at https://www.bioconductor.org/
packages/release/bioc/manuals/enrichplot/man/enrichplot.pdf), based on the deter-
mination of pairwise semantic similarity to find the most informative common ances-
tor in the ontology hierarchy for each pair of terms.

Clustering was performed using the Partitioning Around Medoids (PAM) algo-
rithm, based on the definition of k-medoids. This classical clustering method parti-
tions a dataset into k clusters, where k is assumed to be known a priori. The cluster
median is the object in the cluster with the smallest sum of distances to all other
objects in the same cluster, making it the most central point within the cluster [35].
Unlike the k-means, the k-medoids only selects existing data points as centers, pro-
viding a clearer interpretation of cluster centers compared to k-means, where the
cluster center may not be one of the original data points, but rather the average of the
points within the cluster. Additionally, the k-medoids algorithm can be used with
arbitrary dissimilarity measures, whereas the k-means algorithm typically requires
Euclidean distance [36]. The k-medoids approach minimizes the sum of pairwise dif-
ferences between data points instead of the sum of squared distances, making it more
robust to noise and outliers than the k-means approach [37].

Clustering and visualization of the results is implemented in the “emapplot()”
function (detailed description can be found at https://www.bioconductor.org/pack-
ages/release/bioc/manuals/enrichplot/man/enrichplot.pdf), which also creates a net-
work enrichment map. This graph combines ontologies, represented as nodes, into a
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network with edges connecting overlapping sets of genes. Thus, intersecting sets of
genes tend to be grouped together, making it easier to identify functional modules.
The color of a node reflects the statistical significance of the enrichment, and the size
of the node represents the number of genes associated with each term. This allows us
to quickly identify important or highly enriched terms. Figure 1 presents the cluster-
ing results for the 45 most significant (q-value <0.05) gene ontologies of the up-list
(Fig. 1, a) and all 1,016 significant (g-value <0.05) ontologies (Fig, 1, b) from this list.
A closer examination of the first 45 ontologies (Fig, 1, a) reveals that the “ossifica-
tion” ontology, which means bone tissue formation, bone matrix mineralization and
etc. in GO terms, is included in the cluster of the canonical NF-kB metabolic pathway
(blue oval, Figure 1, a). This indirectly confirms our selection in Table 3. The study of
all significant (q-value <0.05) ontologies (Fig. 1, b) is primarily necessary for identi-
tying the general directions of the molecule’s action. Therefore, listing all ontologies
in this case is unnecessary.

diew
]
®
®
o=
vale
I M

Fig. 1. The example of clustering of significant (q-value <0.05)
up-list gene ontologies: the first 45 (2) and all 1,016 (b)

Similarly, Figure 2 shows the clusters for the 45 most significant (q-value <0.05)
ontologies of the down-list (Fig. 2, a) and all 1,258 significant (q-value <0.05) ontolo-
gies of the corresponding list (Fig. 2, b).

At the same time, it should be noted that as the number of ontologies considered
for the two lists increases, the patterns of cluster arrangement in the space of semantic
similarity coefficient values are preserved. This could indicate the appropriate use of
the “emapplot()” function’s parameters.

In addition to clustering, the “clusterProfiler” package allows you to explore the
possible hierarchy of the obtained ontologies. For this purpose, the “treeplot()” func-
tion is provided, which enables the creation of a tree-like graph of semantic similarity
(Fig. 3). Researchers can find a detailed description of this function at (https://www.
bioconductor.org/packages/release/bioc/manuals/enrichplot/man/enrichplot.pdf).
As aresult, “treeplot()” creates a graph where each path is represented by a node, and
parent-child relationships between terms are indicated by connecting lines. Similar
to a network map, the size of each node depends on the number of genes included
in the ontology, while the color indicates the statistical significance of gene enrich-
ment within the ontology. In our example, the output of “treeplot()” for the 45 most


https://www.bioconductor.org/packages/release/bioc/manuals/enrichplot/man/enrichplot.pdf
https://www.bioconductor.org/packages/release/bioc/manuals/enrichplot/man/enrichplot.pdf
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significant (q-value <0.05) ontologies of the up-list (Fig. 3, 2) and down-list (Fig. 3, b)
identifies 5 groups, whose ontologies are related to each other through a common
parent term.

;I geese

Fig. 2. The example of clustering of significant (q-value <0.05) down-list gene ontologies:
the first 45 (a) and all 1,258 (b)
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Fig. 3. The example of the possible hierarchy of gene ontologies
of the up-list (2) and down-list (b)

Conclusions

The developed pipeline demonstrates complex capabilities. On the one hand,
it allows analyzing the effect of chemical compounds on a priori known genes
and metabolic pathways; on the other hand, it helps to identify potentially new
pharmacological effects of the compounds under study. This toolkit is of particular
value for preclinical studies, where rapid data processing and cost-effective methods
are essential. As modern studies show, the use of in silico approaches significantly
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optimizes the screening of biologically active compounds [38]. In particular, similar
methods can save 30—40 % of the time compared to traditional approaches [39] and
significantly reduce financial costs during the initial stages of new drug development
[3; 40]. In addition, the application of this approach in personalized medicine, where
rapid analysis of individual genetic and metabolic profiles of patients is crucial, is of
particular practical interest. These results open up prospects for further development
of this area of research. The authors hope that the proposed methodology will become
a useful tool for the scientific community, combining three key advantages: (1) high
analytical efficiency, (2) simplicity of use, and (3) cost-effectiveness. The presented
approach can be widely applied in both fundamental studies of the mechanisms of
medicinal substance effects and in practical applications across molecular biology,
pharmacology, and bioinformatics.
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