Natural and medical sciences

2021 Issue №1

Back to the list Download the article

On the study of yeasts consortia ethanol producing abilities

Pages
54-63

Abstract

The production of bioethanol from non-food feedstock is considered to be a promising alternative to conventional ethanol production from food crops. However, a number of significant technological drawbacks does not allow the industrial production of bioethanol. There is the problem of screening the most effective microorganisms-producers in particular. Due to multicomponent composition of substrate, the use of several strains of microorganisms is considered to be more effective than that of one strain. Thus, the aim of the study is to select yeast consortia capable of cocultivation, and to analyze their ability to produce ethanol. According to the aim of the study, the analysis was carried out to determine the biocompatibility of some ethanologenic microorganisms from the All-Russian collection of industrial microorganisms. The ability of ethanol generation by a yeast consortia, using the enzymatic hydrolyzate of delignified Miscanthus cellulose. The comparison of the ability of yeast consortia to generate ethanol depending on aeration conditions was made. The test samples were controlled for reducing sugars with spectrophotometry, while the resulting ethanol content was determined with gas chromatography. It has been found that the use of yeast consortia makes ethanol fermentation efficient, as evidenced by the significant bioconversion of reducing sugars.

Reference

1. Садыков Р.Р., Хасаншин Р.Р., Илалова Г.Ф., Гизатова М.В., Саерова К.В., Илалова А.Ф. Жидкое топливо из растительной биомассы. Биоэтанол //Наука молодых-будущее России. 2018. С. 292—297.

2. Хабаров Ю.Г., Камакина Н.Д., Вешняков В.А. Фотометрический метод количественного определения редуцирующих сахаров в растворах //Известия высших учебных заведений. Лесной журнал. 2008. №. 5. С. 129—133.

3. Цед Е. А. Природные консорциумы микроорганизмов как потенциальные источники бродильных процессов //Вест. МГУП. 2012. №. 2. С. 13.

4. Akaracharanya A., Krisomdee K., Tolieng V., Kitpreechavanich V., Tanasupawat S. Improved SSF-cellulosic ethanol production by the cellobiose fermenting yeast Kluyveromyces marxianus G2—16—1 //Chiang Mai Journal of Science. 2016. Т. 43, №. 5. С. 985—996.

5. Azhara S., Abdullaa R., Jamboa S., Marbawia H., Gansaua J., Faika A., Rodrigues K. Yeasts in sustainable bioethanol production: A review //Biochemistry and Biophysics Reports. 2017. Т. 10. P. 52—61.

6. Benito Á., Calderón F., Benito S. The Influence of Non-Saccharomyces Species on Wine Fermentation Quality Parameters //Fermentation. 2019. Т. 5, №. 3. 54 p.

7. Cuevas M., Saleh M., Garsia-Martin J., Sanchez S. Acid and Enzymatic Fractionation of Olive Stones for Ethanol Production Using Pachysolen tannophilus //Processes. 2020. Т. 8, №. 2. 195 p.

8. Domènech G.R. Martínez G.L., Barrera E., Poblet M., Rozès N., Cordero-Otero R. Enhancing the tolerance of the Starmerella bacillaris wine strain to dehydration stress //Annals of Microbiology. 2018. Т. 68, №. 10. P. 667—676.

9. Djelal H., Chniti S., Jemni M., Weill A., Sayed W., Amrane A. Identification of strain isolated from dates (Phœnix dactylifera L.) for enhancing very high gravity ethanol production //Environmental Science and Pollution Research. 2017. Т. 24, №. 11. P. 9886—9894.

10. El Harchi M., Kachkach F. Z. F., El Mtili N. Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus //South African Journal of Botany. 2018. Т. 115. P. 161—169.

11. Esteves M., Barbosa C., Vasconcelos I., Tavares M.J., Mendes-Faia A., Pereira Mira N., Mendes-Ferreira A. Characterizing the Potential of the Non-Conventional Yeast Saccharomycodes ludwigii UTAD17 in Winemaking //Microorganisms. 2019. Т. 7, №. 11. 478 p.

12. Ferreira J., Santos V.A.Q., Cruz C.H.G. Ethanol production by co-culture of Zymomonas mobilis and Pachysolen tannophilus using banana peels hydrolysate as substrate //Acta Scientiarum. Technology. 2018. Т. 40. P. e35169-e35169.

13. Golias H., Dumsday G.J., Stanley G.A., Pamment, N.B. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis //Journal of biotechnology. 2002. Т. 96, №. 2. P. 155—168.

14. Karagöz P., Özkan M. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system //Bioresource technology. 2014. Т. 158. P. 286—293.

15. Nurcholis M., Lertwattanasakul N., Rodrussamee N., Kosaka T., Murata M., Yamada M. Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus //Applied Microbiology and Biotechnology. 2020. Т. 104, №. 2. P. 475—488.

16. da Silva E.G., Borges A.S., Maione N.R., Castiglioni G.L., Suarez C.A., Montano I.D. Fermentation of hemicellulose liquor from Brewer's spent grain using Scheffersomyces stipitis and Pachysolen tannophilus for production of 2G ethanol and xylitol //Biofuels, Bioproducts and Biorefining. 2020. Т. 14, №. 2. P. 127—137.